

MASTER THESIS IN MICRODATA ANALYSIS

A Computational model for Trust-based Collaborative Filtering

- An empirical study on hotel recommendations

Author:

Qinzhu Wu

Supervisor:

William Wei Song

June, 2013

Business Intelligence Program

School for Technology and Business Studies

Dalarna University

Abstract

The inherent weakness of the data on user ratings collected from web, such as sparsity and

cold-start, has limited the data analysis capability and prediction accuracy in recommender

systems (RS). To alleviate this problem, trust has been incorporated in collaborative filtering

(CF) approaches with encouraging experimental results. In this paper, we propose a

computational model for trust-based CF combined with k-means clustering, k-nearest

neighbor (kNN) and three different methods to infer trust, based on a detailed data analysis of

hotel dataset collected from Booking.com. We apply this model on users’ ratings of hotels and

show its feasibility by comparing the testing results with conventional CF algorithm using

evaluation metrics Mean Absolute Error (MAE) and prediction coverage. Our experimental

results indicate that the use of trust can improve prediction accuracy if the definition of trust is

reasonable enough.

Keywords: Trust, Collaborative filtering, Recommender systems.

Contents

1 Introduction ..1

1.1 Problem description ...1

1.2 Solutions ...1

1.3 Evaluations ..2

1.4 Conclusions ...2

2 Related Work ...3

2.1 Recommender Systems ..3

2.2 Collaborative Filtering ...3

2.3 Trust in RS ..4

3 Methodology ...5

3.1 Conventional Method ...5

3.2 Trust-enhanced Method ..7

3.3 Summary ...8

4 Experiment .. 10

4.1 Data and Tools ... 10

4.2 Evaluation Metrics ... 11

4.3 Algorithm .. 12

4.4 Experimental Results ... 13

5 Conclusion .. 16

5.1 What have we done? ... 16

5.2 Contributions ... 16

5.3 Future Work .. 16

6 References ... 18

7 Appendix ... 20

7.1 Appendix-A: Notation and Terminology ... 20

7.2 Appendix-B: Experimental Results ... 21

1

1 Introduction

1.1 Problem description

Recommender systems (RS) are software tools and techniques providing suggestions for

items to be use of a user [1]. Although collaborative filtering has proven to be one of the

most effective techniques to be incorporated into RS, it still suffers from the inherent

weaknesses existed in raw data, such as data sparsity. Data sparsity refers to the situation

that users only rate a small portion of the available items, thus resulted in a sparse user-

item matrix where we can hardly find co-rated items between users. For instance, in our

case, a large number of ratings on hotels were collected from registered users of the well-

known accommodation reservation website Booking.com
1
, however, only 5% of users in

the datasets rated more than one hotel, the lack of prior ratings makes it fundamentally

difficult to find enough number of similar users and make accurate predictions for an

individual with conventional collaborative filtering method. On the other hand, due to the

sparse ratings matrix with huge number of null values, large amount of computer memory

will be wasted to store the useless values.

Many research works has shown a rising interest in incorporating trust into recommender

systems to solve this problem, mainly by quantifying trust into numerical values and

build a web of trust (WOT) for each user, using trust inference and trust propagation. The

effectiveness of trust has been proved for many times, that it can improve the prediction

accuracy efficiently. However, there was not a stationary definition for trust in RS. Thus

we want to explore novel methods to define trust and verify the feasibility of trust when

combine it with collaborative filtering algorithm, to see how much effect it has on

improving the prediction accuracy.

1.2 Solutions

In this paper we propose a computational model with trust-based CF to alleviate the

sparsity problem existed in our datasets, as well as verifying the feasibility of using trust.

First, large amount of real data was collected from Booking.com and has been analyzed

from different angles using JMP software. Secondly, all hotels (items) were classified

into different clusters based on their attributes with k-means clustering technique and

denoted by their cluster id. This idea is enlightened from our data analysis result, as well

as from a literature review [15], which we will introduce in section 2.3 in detail. Thirdly,

for each testing user chosen from dataset, we find a group of neighbors (k-nearest

neighbor) who have similar preference based on their commonly rated clusters and prior

rating patterns. Predictions were made based on the conventional CF formula (section

3.1), in which the rating value can be calculated from previous ratings of neighbors. At

last, we evaluate and compare the performance of predictions by two metrics: mean

absolute error (MAE) and prediction coverage (section 4.2).

To make the prediction results more accurate and verify the feasibility of trust, trust was

incorporated in the third step in computation procedure. Trust is an assumed reliance on

some people or things that they will not fail us. Here we developed three methods to infer

trust based on users’ information based on different assumptions. The first assumption we

made is that users whose rating values are more proximate to the total rating value of

hotel itself, are more trustworthy than others. Second assumption is based on the group

type of a user, e.g., family with children is more trustworthy than solo traveler when

giving rating to a hotel. Third assumption is that experienced users who has rated more

1
 Source: http://www.booking.com

A Computational model for Trust-based Collaborative Filtering Ch.1: Introduction

2

items before are more trustworthy. Users who were considered to be more trustworthy

were assigned a higher trust value. Then we adjust the CF formula by replacing the

weights with trust values of neighbors, to see if the use of trust indeed works well in

improving prediction accuracy.

1.3 Evaluations

Evaluation metrics (section 4.2) used in this paper are Mean Absolute Error (MAE) and

prediction coverage, which are commonly used within the context of RS. MAE is the

average absolute deviation of the actual rating values to the predicted values, thus the

lower the MAE, the more accurately the RS predicts. Coverage is the percentage of

hidden ratings that an algorithm was able to predict, and a higher coverage indicates

better result.

Evaluation results (section 4.4) from our experiments have indicated that although the

improvement of prediction accuracy is not very significant, the use of trust indeed helps

to improve the accuracy of predicted rating values, as long as the measurement of trust is

rational enough, e.g., Trust-1 and Trust-2. Parameters like the number of clusters K also

act as an important role in prediction accuracy. Experimental results from our case

indicate that K=10 performs better than K=20 and K=30.

1.4 Conclusions

In this paper a computation model for trust-based CF was proposed, in which k-means

clustering, k-nearest neighbor and three measurements of trust were combined together to

improve prediction accuracy on a sparse rating dataset. Our contributions are mainly

focused on the test and verification of trust and an algorithm which avoids the waste of

computer memory caused by large amount of null values. Future work of our thesis will

be centralized in adjusting the method with other datasets, exploration of a more efficient

way to incorporate trust into RS and the use of trust propagation.

The remainder of this paper is organized as follows. Section 2 surveys existing research

work on recommender systems, collaborative filtering and the rising interest to

incorporate trust into CF. Section 3 provides detailed descriptions on conventional

collaborative filtering method, weight computation method for neighbors normally

incorporated into CF, as well as our trust-enhanced CF method. In section 4 we introduce

our hotel data sets and the sparsity problem caused by it, evaluation metrics including

mean absolute error (MAE) and Coverage, algorithm with regard to implementation steps

and experimental results with detailed analysis. Section 5 provides a conclusion on what

we have done, our contributions and future work. References and appendix will be given

in section 6 and 7.

A Computational model for Trust-based Collaborative Filtering Ch.2: Related Work

3

2 Related Work

2.1 Recommender systems

Recommender systems (RS) [7] emerged as an independent research area since the

appearance of collaborative filtering in the mid-1990s [8]. The first recommender system,

Tapestry [6], originally designed to improve efficiency of E-mail filtering by

incorporating other users’ opinions in the process, can be traced back to 1992. RS

normally focused on giving suggestions on items towards individuals who may lack

experiences before. Nowadays it is still a popular area to be developed, not only because

it can address the information overload problem, but also owing to the far-ranging

applications it has brought to us. Examples of such applications can be found everywhere:

helping customers decide which products to purchase in an E-commerce website

(Amazon.com [10]), recommending songs to music lovers in a radio website (Last.fm

[5]), and mobile recommender systems using spatial data [11].

Usually recommender systems were classified according to techniques that have been

incorporated to them. Based on this, we typically have three different types of

recommender systems: collaborative filtering (CF), content-based and hybrid system. The

main difference between collaborative filtering and content-based approach is that the

former one recommends items that other similar users have liked by computing similarity

values between users. As for content-based technique, we only recommend items which

are similar to the items one user has liked in the past. One typical hybrid recommender

system is Fab [3], by combining both techniques, it may alleviate some weaknesses found

in each approach. A state-of-the-art introduction of recommender system can be found in

[1].

2.2 Collaborative Filtering

Many literature review have indicated that collaborative filtering is one of the most well-

known, successful and widely implemented techniques [1, 4, 13, 14, 19]. The biggest

advantage of CF over content-based approach is that it only relies on opinions on items

described by users [19]. Instead content-based systems require more detailed descriptions

of each item, so as to generate similarities between items. Two general classes of CF

algorithms were examined in [12]: Memory-based algorithm and model-based algorithm.

Model-based algorithm can be viewed as calculating the expected value of a vote from a

probabilistic perspective, based on what we know about the user. Related methods

include cluster models and Bayesian networks. As for the memory-based algorithm, we

will describe it explicitly in section 3.1.

However, CF approach still suffers from three fundamental challenges [20]: data sparsity,

cold-start and scalability. Data sparsity refers to the situation that users only rate a small

portion of the available items, thus resulted in a sparse user-item matrix where we can

hardly find co-rated items between users. In cold-start problem, the lack of historical

information occurs on new items or users consequently lead to a ‘dumb’ state in RS, that

the system fails to consider users with an empty file or items no one has previously rated.

Scalability entails a large amount of computation when there are millions of users and

items, which is usually the case in reality. In this paper we focused on data sparsity and

proposed a model to alleviate this problem.

Several approaches have been adopted in previous work to cope with this challenge and

received moderately good results. As we mentioned before, hybrid algorithm combing

both CF and content-based techniques can alleviate weakness in both approaches.

A Computational model for Trust-based Collaborative Filtering Ch.2: Related Work

4

Dimensionality reduction methods, such as Singular Value Decomposition (SVD), Latent

Semantic Indexing (LSI), reduce the dimensions of matrix by getting rid of unimportant

users or items [22]. Huang et al [21] applied an associative retrieval framework and

spreading activation algorithms to deal with the sparsity problem. Manos et al [17] used

trust inference to alleviate this problem.

2.3 Trust in RS

A rising interest in trust-enhanced recommender systems was found in recent research

work [1, 14, 15, 17, 19]. Trust is a common concept in our daily life and it can be defined

in various ways, B. Noteboom claims that trust is an expectation that things or people will

not fail us, or the neglect or lack of awareness of the possibility of failure [23]. Another

notion of trust was presented by P. Sztompka, “It is a type of bet taken on the issue of

uncertain future activities of other people”[24]. For trust in recommender systems, there

is no stationary definition for it. The main strength of applying trust into recommender

systems is to quantify trust into numerical values and build a web of trust (WOT) for each

user, using trust inference and trust propagation. Examples of major algorithms for

building trust network are Moletrust [25] and Tidaltrust [2].

J. Wang [15] proposed a method to generate trust by incorporating the taste of users’ on

choosing items. The tastes of users were implied from the classification of items, based

on the intuition that users usually trust those who have similar taste with them. The more

items that a user rated to a certain cluster of items, the more interest a user showed to

them. After that the trust metric is developed from the taste set of a user in all clusters of

items. Then trust was propagated throughout a social network to include more similar

users. Finally ratings were predicted by summing up all rating values from similar users

and the results were evaluated by using MAE and Coverage. Results from experiments

have indicated that the use of trust can decrease MAE and increase Coverage in a sparse

dataset compared with User Similarity-based CF and Item Similarity-based CF. The k-

means clustering method we used in our paper is enlightened by the similar taste ideas

from this literature.

A Computational model for Trust-based Collaborative Filtering Ch.3: Methodology

5

3 Methodology

3.1 Conventional Method

Normally, the task in collaborative filtering can be of two forms [13]: prediction and

recommendation. Prediction is a numeric value expressing the predicted rating score on

an item from a particular user (we will denote this user as the active user).

Recommendation is to recommend a list of items the active user will like probably. We

choose prediction as our task to implement with the hotel data set, i.e., predict rating

values within the same scale (e.g., from 0 to 10) for the active user on hotels he or she has

no experience before.

Collaborative filtering usually follows two steps [26]:

1. Find neighbors who share the same rating pattern for the active user	�.

2. Assign a weight for each neighbor found in the first step of user � and use their

ratings to calculate predictions for user	�.

The two steps above can be normalized into several equations and we use the classical

memory-based CF formula [18] as the basis of our algorithm:

��,� = �̅� + ∑ �
�,�����,���̅������∑ �
�,������ (1)

where	��,� is the predicted rating of the active user � for item �. �̅� and �̅� is the mean

rating score for user � and user � respectively. The mean rating value and standard

deviation for user � can be defined as:

�̅� = �|��|∑ ��,��∈�� , �� = �|��|∑ ���,� − �̅��"�∈�� (2)

Here �� is the set of items on which user � has rated and |��| represents the number of

observations in a set. ��,� is the rating score on item � from user �. In Equation (1), # is the

number of users in the collaborative filtering database with nonzero weights. $
�, �� is

the weights of # similar users and it can be defined in several different ways:

� K-nearest neighbor

 $
�, �� = %1 �'	� ∈ (�0 *+,* (3)

� Pearson correlation coefficient $
�, �� = ∑ ���,� − �̅�����,� − �̅��� ∑ ���,� − �̅��"∑ ���,� − �̅��"��

� Cosine distance $
�, �� =- ��,� ∑ ��,.".∈�/
��,� ∑ ��,.".∈���

Pearson correlation coefficient (PCC) has proven to be the most efficient and accurate

way to express the similarity of rating pattern between two users. However, it requires

user � and user � have at least two co-rated items, otherwise 	$
�, �� = 00 . For cosine

distance, $
�, �� = 1 if � equals to 1, i.e., when user � and user � have only one co-rated

item, $
�, �� equals to a constant. In consideration of actual situation in our case, most

A Computational model for Trust-based Collaborative Filtering Ch.3: Methodology

6

users lack experience with accommodation in distinct hotels, i.e., it is difficult to find

more than one co-rated items between two users. We denote this as the sparsity problem

in our data set and we will explain it in detail in section 4.1. In the light of this, we choose

k-nearest neighbor as weighting method due to its flexibility in defining neighbors.

The k-nearest neighbors (kNN) rule [9] is one of the simplest and oldest methods for

pattern classification. Its performance crucially depends on the distance metrics used to

identify nearest neighbors. Equation (3) is a simple expression of how kNN can be

combined with CF algorithm. If user � belongs to the neighborhood of user �, i.e., � ∈ (�,

we simply set $
�, �� = 1 , otherwise $
�, �� = 0 . The conditions of how can we

determine if a user belongs to the neighborhood or not will be introduced in the next

paragraph.

To extend the scope of neighbors of users, we use k-means clustering to classify items

into 1 clusters. K-means clustering is a term within the context of data mining, which

aims to partition n observations into k clusters in which each observation belongs to the

cluster with the nearest mean [27]. Here we partition the item set I into 1 clusters

according to nine numerical attributes of each item: star level, number of total votes,

average score, rating values corresponding to five aspects-clean, comfort, location,

service, staff and value for money. This step is implemented by JMP software

automatically. A detailed description of these attributes can be found in section 4.1. We

name this process as ‘Fuzzification of items’ because all items were fuzzified into 1

clusters and users who have co-rated hotels in the same cluster can be correlated together.

In this sense, much more neighbors can be found even when the active user has voted

only one item. According to our data set, the scope of neighbors for an active user � can

be defined as follow:

2 3|4�| − |4�|3 ≤ 67�|4� ∩ 4�| ≥ min=|4�|, |4�|> × @"|�̅� − �̅�| ≤ @A, |�� − ��| ≤ @B
C�DEFGHIIIJ			� ∈ (� (4)

Here 4� denotes the set of clusters to which �� belongs. |4�| is the number of	4�. @� is a

threshold parameter combined with 1. 4� ∩ 4� is the intersection set of clusters that ��

and �� falls in at the same time. @" refers to a percentage parameter, e.g., 50%. @A and	@B

are two thresholds for the distance of mean value and standard deviation between two

users.

Table 3-1: Hotel & Cluster Ids of User a (ID: 5698)

Table 3-2: Hotel & Cluster Ids of User i (ID: 43936)

User ID

Hotel ID 181 642 865 1520 2881 3027 3662 3936 4563 5115

Cluster ID 1 6 18 4 11 20 11 12 11 11

Rating Score 8.8 7.1 9.2 7.5 7.5 9.6 8.3 6.5 7.5 8.3

5698

User ID

Hotel ID 1577 2600 2718 2964 3408 3616 3837 3926 4818 5072

Cluster ID 6 20 3 5 12 5 3 3 1 3

Rating Score 7.1 8.3 8.3 10 10 7 10 8.8 10 3.8

43936

A Computational model for Trust-based Collaborative Filtering Ch.3: Methodology

7

4� {1, 4, 6, 11, 12, 18, 20} 4� {1, 3, 5, 6, 12, 20} 4� ∩ 4� {1, 6, 12, 20} |4�| 7 |4�| 6 3|4�| − |4�|3 1 �̅� 8.03 �̅� 8.33 |�̅� − �̅�| 0.3 �� 0.978717982 �� 1.977119116 |�� − ��| 0.998401134

Table 3-3: Computation results of example

Give a specific example to interpret the equation above. Here we have two users’

information of � and 	� about which hotels they have rated previously (Table 3-1 and

Table 3-2). From these two tables we can see that they have no co-rated hotels even when

they have rated 10 hotels, which is a relatively big number in our dataset. However after

all items were classified into 1 clusters, e. g., 1 = 20, they shared some common cluster

ids.

Suppose both of them have voted 10 items, then user �’s cluster list for these items might

be: 1, 4, 6, 11, 12, 18, 20 (7 clusters) and user �’s list is: 1, 3, 5, 6, 12, 20 (6 clusters). If

we set @� = 10, so the first condition in Equation (4) is satisfied: |7 − 6| ≤ "0�0. After that

we select the common clusters from user � and user � ’s cluster list: 1, 6, 12, 20 (4

common clusters). So the second condition is satisfied as well (if @" = 50%): min=7, 6> × 50% which equals to 3 is less than 4, the number of common clusters.

Finally we compute |�̅� − �̅�| and |�� − ��| and compare them with @A and @B. Here if we

set both of them as 0.5, then the third condition in Equation (4) is not satisfied because

though they shared a similar mean value, their standard deviation is not similar with each

other.

The first equation entails that the two users should have similar level in estimation for

items, i.e., if user � rated only one item but user � rated more than 20 they are not at the

same level so they can’t be similar users, i.e., they are not neighbors. The second requires

the two users should share a relatively big proportion of common clusters in items, i.e.,

they have similar taste when choosing items to use. The third condition indicates that the

mean value of ratings from active user � should be similar with user �, i.e., they have

similar pattern in rating items, both in the case of mean value and standard deviation.

When implementing the CF algorithm in section 4.3, each time we apply this

computation method on the two users that we select from our database, to compute the

similarity between them and filter neighbors for the active (testing) user �. And this is the

conventional method because we set $
�, �� = 1 here. In the next section 3.2, we are

going to incorporate trust by changing the weight computation method $
�, ��.
3.2 Trust-enhanced Method

After making rating predictions for the items used by users with conventional method,

another question was triggered naturally: Can we make the predicted results more

accurate? The answer is undoubtedly true. Past experiences in attempting to incorporate

the concept of trust into recommender systems have shown satisfactory results in

improving prediction accuracy. In some researches, trust information already exists

between users in the database therefore there is no need to infer trust value. In our case,

trust inference is still a problem that we need to solve. Here we define trust value for a

user � as	S�T,S� and it can be generated from three different angles based on our data sets:

A Computational model for Trust-based Collaborative Filtering Ch.3: Methodology

8

� Trust-1: S�T,S� equals to the distance between the mean rating value �̅� and the total

mean rating value S�̅ for user i. As can be shown in Equation (5), we simply define S�T,S� as the reciprocal of the absolute distance between �̅� and S�̅ for user i. S�T,S� = �|�̅��U̅�| (5)

The intuition behind this computation is that if user i’s actual rating value is nearly the

same as the total rating value then user i is more trustworthy, i.e., S�T,S� is allocated a

relatively large value than other users. On the other hand, if the distance between �̅�
and S�̅ is big, then user i’s opinion is less trustworthy. The total rating value S� can be

considered as the most objective and truthful rating value for an item	�, as described in

section 4.1, due to the fact that it is the average rating value generated by hundreds of

users who have used item �. And the mean total rating value S�̅ can be defined as below: S�̅ = �|��|∑ S��∈�� (6)

� Trust-2: S�T,S� is determined by the group type of user	�, e.g., family with children or

couple usually has higher trust value than group of friends. Stemmed from this idea,

we assigned different values for each user according to their group type and listed

them in Table 3-4.

Group type Group id VWXYVZ Percentage Count

Family with young children FY 70% 6.8% 7686

Family with older children FO 70% 8.7% 9945

Group of friends GF 40% 18.5% 21056

Young couple YC 55% 21.3% 24276

Solo traveler ST 50% 22.2% 25276

Mature couple MC 60% 22.5% 25599

Total - - 100% 113838

Table 3-4 Trust value based on different group types and their percentage

From Table 3-4 we can see that users whose group type is family with children or

mature couple were assigned a relatively big trust value, while group of friends and

solo traveler were allocated a relatively small value. This is on the basis of our

common sense that family with children usually needs to think about the children’s

feelings and will probably give more objective and impartial ratings. Experienced

older people like mature couple’s judgment are more trustworthy than young people as

well.

� Trust-3: S�T,S� can be evaluated by the number of items that user � has voted	|��|. We

assume that users who have more experience should be more trustworthy. Hence we

simple define S�T,S� as |��|, as indicated in Equation (7): S�T,S� = |��| (7)

The next step of out trust-enhanced method is simply to adjust weight computation

measure by replacing $
�, �� with S�T,S� in Equation (1). Thus we have a new Equation

(8) which entails the effect of trust:

��,� = �̅� + ∑ U�[GU����,���̅������∑ U�[GU����� (8)

A Computational model for Trust-based Collaborative Filtering Ch.3: Methodology

9

The intuition behind this computation is that users who have higher trust value will

account for a greater proportion when giving suggestions to the active user	�. In the

former situation, $
�, �� = 1 is a constant so that each neighbor account for the same

proportion when giving suggestions to the active user	�. Therefore we assume that this

adjustment on weight computation will make the predictions more accurate.

3.3 Summary

In this section firstly we introduced the conventional collaborative filtering method, in

which we apply the k-nearest neighbor to search similar users combined with k-means

cluster, instead of using the commonly used PCC or cosine distance. In section 3.2, for

the purpose of making predictions more accurate, three different methods of trust

inference were measured and incorporated into the weight computation step. In the next

section, we are going to introduce the hotel datasets, tools and sparsity problem lies in our

dataset. Evaluation metrics and algorithms will be formulated as well and we compare the

effect of incorporating different measurements of trust into the CF algorithm by doing

experiments separately with conventional method (CM), Trust-1, Trust-2 and Trust-3.

Finally an empirical analysis will be given on the strength of experimental results as well.

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

10

4 Experiment

4.1 Datasets and Tools

The purpose of this section is to implement and compare the conventional method with

trust-enhanced method presented in section 3, based on our hotel datasets. Our hotel

datasets were generated from Booking.com, which is an informative website that provides

travelers with accessible accommodation. It was based in Amsterdam in the Netherlands

and supported internationally by offices in over 50 countries around the world.

Established in 1996, it offers over 280,000 hotels and apartments in 180 countries and

attracts over 30 million unique visitors each month at present. More than 18 million

unbiased reviews from real guests can be found from Booking.com up to now.

We randomly selected a number of rating records from hotels located in 8 cities in

Europe from May, 2011 till July, 2012 to form the original dataset. These cities are

Barcelona, Berlin, London, Paris, Prague, Rome, Stockholm and Zürich. After

fundamental data analysis and processing, unimportant columns and duplicated rows

were removed from original dataset, totally 123,296 ratings were obtained from 113,838

users and 5,291 hotels, ranging from 2.5 to 10.0. This leads to the sparsity problem that

we have mentioned previously, because most users’ experience were not enough to

generate a reasonably distributed dataset: 95% of all guests reviewed only one hotel, as

indicated in Table 4-1.

Number of hotels

one user has rated 1 2 3 4 5 6 7 8 9 10 …

Number of users 107922

(95%)
4558

(4%)
778

(0.7%) 248 110 52 42 24 17 9 …

Table 4-1: Distribution of number of hotels that one user has rated

 �� �" �A �B �\

T� 0 7.5 0 0 0 T" 0 0 0 6.2 0 TA 0 0 0 0 0 TB 9.1 0 0 0 0 T\ 0 0 0 8.0 0

Figure 4-1: Example of sparse user-item rating matrix

To illustrate the sparsity problem more specifically, we use an example of rating matrix

to represent our data. In Figure 4-1, rows of the matrix denote users and columns denote

items. Therefore we have 5 users and 5 items as well as the ratings from users to related

items. Here ‘0’ denotes null value, which means the user has not used this item yet.

Obviously there are much more ‘0’ than non-zero values in a sparse rating matrix. In

practical situations, this problem will be much more serious due to huge number of users

and items. This weakness lies in data has disadvantages from two aspects when CF

algorithm is applied to make recommendations. Firstly, sparsity makes it difficult to find

co-rated items for two users, as indicated in Figure 4-1, only T" and T\ have co-rated

item	�B, thus making it difficult to use the effective similarity computation method such

as Pearson Correlation Coefficient (PCC). Secondly, huge number of useless zeros will

occupy a lot of memory and decrease the operating speed of computers. To this end, we

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

11

develop a method to store the data instead of using rating matrix and memory can be

saved as well.

For the convenience of processing data and programming, the original dataset was

divided into three co-related sets: Rating set, User set and Hotel set. Table 4-2, 4-3 and 4-

4 illustrates detailed description of these datasets.

 User id Hotel id Rating score

1 1 3421 7.5

… … … …

123296 113838 4161 9.6

Table 4-2: Rating set

 User id User name User location Group id Group name

1 1 ××× ××× GP Group of friends

… … … … … …

113838 113838 ××× ××× ST Solo traveler

Table 4-3: User set

Each user belongs to a specific type of group. These groups are: family with young

children (FY), family with older children (FO), group of friends (GF), mature couple

(MC), solo traveler (ST) and young couple (YC). This attribute can be used to assign trust

value for each user as described in section 3.2.

Hotel

id

Hotel

name
City

Total

number

Star

level

Total

score

Clean

score

×××

score

Value for

money score

Cluster

id

1 1 ××× ××× 29 3 8.1 7.8 … 8.2 11

… … … … … … … … … … …

5291 5291 ××× ××× 411 5 8.1 8.7 … 7.1 12

Table 4-4: Hotel set

In hotel dataset, there are 9 numerical attributes corresponding with each hotel, i.e., total

number, star level, total score, clean score, comfort score, location score, service score,

staff score and value for money score. Total score can be viewed as the most accurate

evaluation of a hotel by reason of it is based on rating scores from all guests who have

reviewed it as described in Trust-1 in section 3, and total number explained how many

users have contributed on this total score. Star level is commonly employed to categorize

hotels, usually on a scale from 1 to 5 stars. In our dataset, 0 star means no information

about star level for a hotel. Cluster id is on a scale from 1 to 1, which were generated

based on the 9 numerical attributes of hotels.

We use JMP
®

 Pro 10.0.0 to explore and sort data into desired form, as well as generate

cluster id for hotels with k-means clustering. After that we implement algorithms (section

4.3) with Microsoft Visual C++ 2010 Express.

4.2 Evaluation Metrics

For the purpose of evaluating and comparing the performance of each algorithm, we

follow the most commonly used approach of hiding a certain percentage of rating scores

from the dataset then applying each algorithm in turn to predict the value of hidden

ratings. In this case the accuracy of each algorithm can be evaluated from the difference

between actual rating value and predicted value. We apply two metrics which are

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

12

commonly used in the field of recommender systems to evaluate each algorithm: Mean

Absolute Error (MAE) and Coverage [13, 14, 17, 19].

� Mean Absolute Error (MAE)

Mean Absolute Error (MAE) is the average absolute deviation of the actual rating

values to the predicted values as can be shown in Equation (6), where ��,� is the

predicted rating value that user � give to item �, ��,� is the actual rating value and] is

the number of hidden ratings which are able to be predicted by the algorithm. Thus

the lower the MAE, the more accurately the recommender algorithm predicts user

ratings because the predicted values do not vary very far from true ratings.

^_` = ∑ 3a�,����,�3b��� c (6)

� Coverage

Another important metric to estimate recommender engines is coverage for rating

predictions, which is simply the percentage of hidden ratings that an algorithm was

able to predict. As shown in Equation (7),] refers to the number of predictions made

by the algorithm and d is the total number of hidden ratings, which is the requested

number of predictions. As a result, higher coverage values indicate an algorithm can

provide a relatively complete prediction for users. efg*��h* = ci (7)

4.3 Algorithm

In this section a detailed algorithm was given to implement the CF method and trust –

enhanced techniques described in methodology part. Mainly it aims at finding neighbors

for hidden users and making prediction for them. Evaluation of predicted results was also

included in this algorithm. Implications of symbols that used in this algorithm can be

found in Appendix-A (section 7.1).

When executing the computation steps in this algorithm, we vary different parameters

that affect the selection of neighbors and prediction results. Thus we run this algorithm

for 36 times and each time we get different MAEs and Coverage (see Appendix-B). We

will analyze these results in detail in the next section and show the effect of incorporation

of trust, as well as the effect of changing parameters.

Set jk = ∅,jUk = ∅,mUk = ∅,(� = ∅,n� = ∅.

For each ��,� in j, if |��| > 1, add ��,� into jk.
Randomly hide (1- α) percentage ratings from jk as test data, add them into jUk .
For each ��,� in jUk , add user i into mUk .
For each user i in mUk , set user i as active user a:

For each user i in U - a, if condition (4) is satisfied, set $
�, �� = 1	f�	S�T,S� and

add user i into (�.

For each user i in (�, add �� into n�.

Calculate ��,� for each item j in n� using formula (1).

Calculate Coverage and MAE based on ��,� in jUk and n� for each user i.

Table 4-5: Implementation steps of CF algorithm combined with trust

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

13

4.4 Experimental Results

In this section we present our experimental results of applying both conventional method

and trust-enhanced method to implement the predictions and evaluate the results by using

MAE and Coverage. First four different weight computation measures were compared

using MAE to illustrate their prediction accuracy (4.4.1). Sensitivity of the effects of

varying different parameters on experimental results was analyzed in this part as well.

These parameters include: training ratio of experimental ratings - α (4.4.2), threshold

parameters to filter neighbors for experimental users - @", @A, @B (4.4.3) and total number

of clusters for items - K (4.4.4). For the convenience of comparing experimental results,

we set @� = 5 in each condition and do not change this parameter. Finally a summary

was given in 4.4.5 based on the analysis from different angles in this section.

4.4.1 Performance of different prediction methods

We implement the collaborative filtering algorithm based on four different weight

computation measures as described in methodology part. For each prediction method, we

use training set to implement algorithm and predict rating values for hidden ratings in

testing set. Parameters α, @" , @A , @B , K were varied and a set of MAE values were

generated for each method. Then we compute the average value of MAE for each method.

Figure 4-2 shows the experimental result. It can be concluded from this figure that

although the difference of performance between each measure is not very significant, the

use of trust still affects the result. Trust-1 and Trust-2 proves to generate more accurate

predictions than conventional method on average with our dataset. However, Trust-3 does

not show advantage in improving prediction accuracy. This result indicates that if we

inference trust value based on the difference between the actual rating value and total

rating value (Trust-1) or based on group type of users (Trust-2), the prediction might be

more accurate than using conventional weight computation method, although in some

cases the conventional method proves to be the best one (see Table 7-1 in Appendix).

The average value of coverage (0.112212) here is the same for each method by reason of

the weight computation measure does not influence the prediction coverage. Only @", @A, @B and K affect the coverage value.

Figure 4-2: Impact of the weight computation measure on collaborative filtering algorithm

4.4.2 Sensitivity of training ratio α

The first parameter we varied in our experiment is training ratio of experimental ratings α.

Totally 15,229 ratings were selected as experimental data from 123,296 ratings. After that

we set training ratio α as 0.9, 0.7 and 0.5 respectively, with a result of 1,363, 3,798 and

5,882 ratings hidden from experimental data. Then we find neighbors for the hidden users

1,372653

1,372154 1,372151

1,374407

1,371

1,3715

1,372

1,3725

1,373

1,3735

1,374

1,3745

1,375

CM Trust-1 Trust-2 Trust-3

M
A

E
 (

A
v

e
ra

g
e

)

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

14

0,146466 0,130861

0,093427 0,078095

0

0,05

0,1

0,15

0,2

(0.4, 0.6, 0.6) (0.5, 0.5, 0.5) (0.6, 0.4, 0.4) (0.7, 0.3, 0.3)

C
o

v
e

ra
g

e
 (

A
v

e
ra

g
e

)

corresponding to the hidden ratings and make predictions for them using different

methods. A set of MAE and Coverage values were generated under each condition.

Figure 4-3 illustrates the average value of MAE and Coverage when α equals to different

values. It can be observed from this figure that when α = 0.5, the prediction result is more

accurate on average but the prediction coverage is comparatively lower than in other

conditions, i.e., a smaller proportion of hidden ratings can be predicted when α is lower.

When α is set to 0.9, the Coverage is higher but this is at the cost of prediction accuracy.

Figure 4-3: Sensitivity of training ratio α on MAE and Coverage

4.4.3 Sensitivity of threshold parameters pq, pr, ps

The second parameters we varied in our experiments are threshold parameters that help to

filter neighbors for testing users. As described in section 3, @" represents the degree of

similarity of two users when selecting items to use. Hence if @" was set to a larger value,

less neighbors can be found for testing users because it requires that two users should

share a relatively big proportion of common clusters in items, i.e., they have strongly

similar taste in choosing items to use. @A and @B are threshold parameters help to measure

similarity of two users when giving ratings to items they have used. @A is threshold for

the difference of mean rating values between two users and @B is threshold for the

difference of standard deviations of rating values. Hence if @A and @B were set to a

smaller value, more users will be filtered out because it requires higher level of similarity

in rating items.

We can see from Figure 4-4 that the average MAE and Coverage are also affected by this

parameter. When we set (@", @A, @B) as (0.4, 0.6, 0.6), more neighbors can be found for

testing users therefore the Coverage is higher but the prediction accuracy is lower. On the

contrary, if we set (@", @A, @B) as (0.7, 0.3, 0.3), the prediction result is more accurate at

the cost of high prediction coverage.

1,415917

1,357704

1,344903

1,3

1,32

1,34

1,36

1,38

1,4

1,42

1,44

α = 0.9 α = 0.7 α = 0.5

M
A

E
 (

A
v

e
ra

g
e

)

0,129555

0,110431
0,096651

0

0,05

0,1

0,15

α = 0.9 α = 0.7 α = 0.5

C
o

v
e

ra
g

e
 (

A
v

e
ra

g
e

)

1,398201

1,422133

1,354981

1,316051

1,25

1,3

1,35

1,4

1,45

(0.4, 0.6, 0.6)(0.5, 0.5, 0.5)(0.6, 0.4, 0.4)(0.7, 0.3, 0.3)

M
A

E
 (

A
v

e
ra

g
e

)

Figure 4-4: Sensitivity of threshold parameters pq, pr, ps on MAE and Coverage

A Computational model for Trust-based Collaborative Filtering Ch.4: Experiment

15

4.4.4 Sensitivity of number of clusters K

The third parameter we varied in our experiments is the total number of clusters for items

K. Obviously K also influences the prediction accuracy and coverage as can be seen from

Figure 4-5. The Coverage becomes lower as K is set to be higher. This might be due to

the reason that items were partitioned into smaller clusters thus making it difficult to find

similar users who share the same proportion of clusters for items. However, there is no

obvious pattern about how K affects the mean absolute error. When K = 30, MAE proves

to be the least one but the Coverage is too low to generate reasonable predictions. When

K = 10, though MAE = 1.37 is a little higher than MAE = 1.34 when K = 30, the

Coverage = 0.17 is much better than that in any other conditions. Thus it can be

concluded that it is better to set K as a relatively small number, e.g., K = 10.

Figure 4-5: Sensitivity of total number of clusters for items K on MAE and Coverage

4.4.5 Summary

In this section an empirical analysis on experimental results was given to evaluate the

prediction accuracy and coverage with different weight computation methods and

different parameters. It can be concluded from the discussion above that the use of trust is

able to influence the prediction accuracy as described in other research work, though the

improvement is not very significant here. Trust-2 proves to perform better than the other

weight computation methods, which means the weight computation based on group type

of users is better than the other weight computation methods. A series of parameters also

act as important roles when using the same algorithm to do predictions for testing users.

In general, rules from our analysis indicate that there exists a trade-off between the

prediction accuracy and coverage, i.e., prediction accuracy is at the cost of prediction

coverage and vice versa. However, when we set number of clusters K as 10, the Coverage

(0.167472) is much higher than in any other conditions and the MAE is also better than

the average level in Trust-2 (1.371566 < 1.372151).

1,371566

1,406481

1,340477

1,3

1,32

1,34

1,36

1,38

1,4

1,42

K = 10 K = 20 K = 30

M
A

E
 (

A
v

e
ra

g
e

)

0,167472

0,090636 0,078529

0

0,05

0,1

0,15

0,2

K = 10 K = 20 K = 30
C

o
v

e
ra

g
e

 (
A

v
e

ra
g

e
)

A Computational model for Trust-based Collaborative Filtering Ch.5: Conclusion

16

5 Conclusion

5.1 What have we done?

In this paper, a computational model for trust-based collaborative filtering was proposed

and implemented with our hotel data sets collected from Booking.com. Our goal is to

explore an effective method which is able to make rating value predictions for users even

when there exists sparsity problem on data sets and test the effect of trust, in line with the

conventional CF algorithm.

On the basis of data analysis, we choose k-nearest neighbor as our method to find

neighbors with similar preference and taste for testing users, instead of applying the

commonly used Pearson correlation coefficient or Cosine distance method, for the reason

that it is difficult to find users with co-rated hotels. Trust has been applied into the

conventional CF algorithm by adjusting the weight between testing users and their

neighbors, according to the user information of neighbors like group type or how much

experience they have. The empirical analysis on experimental results has shown that the

use of trust can improve prediction accuracy only when the definition of trust is

reasonable enough, e.g., Trust-1 and Trust-2. Therefore the measurement and inference of

trust is a critical step when incorporating trust into recommender systems. Parameters like

number of item clusters K also plays an important role when making predictions for users,

e.g., K = 10 performs better when considering both MAE and Coverage compared with K

= 20 and K = 30.

5.2 Contributions

Our contributions in this paper are mainly focused on the following aspects. Firstly, we

collected large amount of data on hotel ratings and user information from a well-known

accommodation booking website Booking.com, then we analyzed and sorted data from

different angles using JMP software. Secondly, instead of using the well-known Pearson

correlation coefficient method to compute weight between users, we apply k-nearest

neighbor to filtering neighbors which can be easily handled with a sparse rating dataset.

Thirdly, we make three different assumptions of trust and substitute the neighbor weight

with them in CF formula, and tested it with our hotel data sets to verify the feasibility of

trust. Fourthly, we avoid using the conventional rating matrix to store data due to large

amount of null values, instead we use some data structures like User, Item and Rating

which helps to save memory when programming with C++.

One critical aspect of contributions in this paper is that we use k-means clustering to

assign each hotel a cluster id. This step makes it easier for us to find the relevance of two

users on their preference when choosing and rating items, on the basis of the common

clusters of items that two users has voted, and their rating pattern on these clusters. This

is a direction that maybe we can explore and improve to alleviate the sparsity problem in

the future.

5.3 Future Work

Future work of our thesis work will be centralized in several areas: Can this model be

applied to other data sets? Is there a more effective way to infer trust that can improve the

prediction accuracy significantly? What will happen if we apply trust propagation into

our model? What should be noticed here is the complexity of trust, which was denoted by

Elizabeth Chang [16], that trust is composed by three fuzzy and dynamic characteristics:

Implicitness, Asymmetry and Transitivity in trust. However, in our case, asymmetry and

A Computational model for Trust-based Collaborative Filtering Ch.5: Conclusion

17

transitivity had not been taken into consideration thus this is something that we can

improve in future work.

There are several different ways to answer the first question: Can this model be applied to

other data sets? Due to time limitation, we were not able to generate a relatively

reasonable distributed dataset, i.e., too many users and hotels generate few ratings. Thus

if we are able to collect or get a more reasonably distributed dataset from other websites,

we may test on it and compare with the results from the dataset we used in this paper.

Some datasets such as Epinions.com provide trust value matrix by itself thus we don’t

need to infer trust under this case.

For the method of trust inference, the assumptions that we made in this paper were

generated based from information in our case thus it has limitations when applying to

other cases. Therefore we may need to develop a more general method of trust inference

which can be widely applied. Another inspiration from our experimental results is that

maybe we can combine Trust-1 and Trust-2 to improve the prediction accuracy because

both of them act as positive factor when affecting the experimental results.

Trust propagation is actually the exemplification of the Transitivity characteristic of trust.

A good example of trust propagation can be found in [17], in which trust was propagated

according to a weighted sum of plus or minus sign and numerical values of users’

similarity. However, it didn’t take the Asymmetry characteristic of trust into

consideration. Therefore a more improved way of incorporating trust propagation should

consider both Transitivity and Asymmetry of trust.

A Computational model for Trust-based Collaborative Filtering Ch.6: References

18

6 References

[1] Ricci, Francesco, Lior Rokach, and Bracha Shapira. Recommender Systems

Handbook (2011).

[2] Golbeck, Jennifer, and James Hendler. "Filmtrust: Movie recommendations

using trust in web-based social networks." Proceedings of the IEEE Consumer

communications and networking conference. Vol. 96. University of Maryland, 2006.

[3] Balabanović, Marko, and Yoav Shoham. "Fab: content-based, collaborative

recommendation." Communications of the ACM 40.3 (1997): 66-72.

[4] Burke, Robin. "Hybrid recommender systems: Survey and experiments." User

modeling and user-adapted interaction 12.4 (2002): 331-370.

[5] Levy, Mark, and Klaas Bosteels. "Music recommendation and the long tail." 1st

Workshop On Music Recommendation And Discovery (WOMRAD), ACM RecSys, 2010,

Barcelona, Spain. 2010.

[6] Goldberg, David, et al. "Using collaborative filtering to weave an information

tapestry." Communications of the ACM 35.12 (1992): 61-70.

[7] Resnick, Paul, and Hal R. Varian. "Recommender systems." Communications of

the ACM 40.3 (1997): 56-58.

[8] Adomavicius, Gediminas, and Alexander Tuzhilin. "Toward the next generation

of recommender systems: A survey of the state-of-the-art and possible

extensions." Knowledge and Data Engineering, IEEE Transactions on 17.6 (2005): 734-

749.

[9] Weinberger, Kilian Q., John Blitzer, and Lawrence K. Saul. "Distance metric

learning for large margin nearest neighbor classification." In NIPS. 2006.

[10] Linden, Greg, Brent Smith, and Jeremy York. "Amazon.com recommendations:

Item-to-item collaborative filtering." Internet Computing, IEEE 7.1 (2003): 76-80.

[11] Ge, Yong, et al. "An energy-efficient mobile recommender system."Proceedings

of the 16th ACM SIGKDD international conference on Knowledge discovery and data

mining. ACM, 2010.

[12] Breese, John S., David Heckerman, and Carl Kadie. "Empirical analysis of

predictive algorithms for collaborative filtering." Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,

1998.

[13] Sarwar, Badrul, et al. "Item-based collaborative filtering recommendation

algorithms." Proceedings of the 10th international conference on World Wide Web.

ACM, 2001.

[14] O’Doherty, Daire, Salim Jouili, and Peter Van Roy. "Trust-based

recommendation: an empirical analysis." Submitted to: Proceedings of the Sixth ACM

SIGKDD Workshop on Social Network Mining and Analysis SNA-KDD, Beijing, China,

ACM. 2012.

[15] Wang, Jing, et al. "Trust-based collaborative filtering." Fuzzy Systems and

Knowledge Discovery (FSKD), 2011 Eighth International Conference on. Vol. 4. IEEE,

2011.

A Computational model for Trust-based Collaborative Filtering Ch.6: References

19

[16] Chang, Elizabeth, Tharam S. Dillon, and Farookh K. Hussain. Trust and

reputation for service-oriented environments: Technologies for building business

intelligence and consumer confidence. John Wiley & Sons, P.110-114, 2006.

[17] Papagelis, Manos, Dimitris Plexousakis, and Themistoklis Kutsuras.

"Alleviating the sparsity problem of collaborative filtering using trust inferences." Trust

management (2005): 125-140.

[18] Resnick, Paul, et al. "GroupLens: an open architecture for collaborative filtering

of netnews." Proceedings of the 1994 ACM conference on Computer supported

cooperative work. ACM, 1994.

[19] Massa, Paolo, and Paolo Avesani. "Trust-aware collaborative filtering for

recommender systems." On the Move to Meaningful Internet Systems 2004: CoopIS,

DOA, and ODBASE (2004): 492-508.

[20] Huming, Gao, and Li Weili. "A Hotel Recommendation System Based on

Collaborative Filtering and Rankboost Algorithm." Multimedia and Information

Technology (MMIT), 2010 Second International Conference on. Vol. 1. IEEE, 2010.

[21] Huang, Zan, Hsinchun Chen, and Daniel Zeng. "Applying associative retrieval

techniques to alleviate the sparsity problem in collaborative filtering." ACM Transactions

on Information Systems (TOIS) 22.1 (2004): 116-142.

[22] Su, Xiaoyuan, and Taghi M. Khoshgoftaar. "A survey of collaborative filtering

techniques." Advances in Artificial Intelligence 2009 (2009): 4.

[23] Nooteboom, Bart. Trust: Forms, foundations, functions, failures and figures.

Edward Elgar Pub, 2002.

[24] Sztompka, Piotr. Zaufanie: fundament społeczeństwa. Znak, 2007.

[25] Massa, Paolo, and Paolo Avesani. "Controversial users demand local trust

metrics: An experimental study on epinions. com community." Proceedings of the

National Conference on artificial Intelligence. Vol. 20. No. 1. Menlo Park, CA;

Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

[26] http://en.wikipedia.org/wiki/Collaborative_filtering

[27] http://en.wikipedia.org/wiki/K-means_clustering

A Computational model for Trust-based Collaborative Filtering Ch.7: Appendix

20

7 Appendix

7.1 Appendix-A: Notation and Terminology

Sets:

U = set of all users in dataset denoted by i, i = {1, …, M}

I = set of all items in dataset denoted by j, j = {1, …, N}

R = set of all ratings in dataset denoted by k, k = {1, …, L} �� = set of items on which user i has rated 4� = set of clusters to which �� belongs (� = set of neighbors of user i n� = set of predicted items of user i jk = set of experimental ratings from users whose |��| > 1 jUk = set of hidden ratings with training ratio α from jk mUk = set of users whose ratings belong to jUk

Variables: S� = total rating value of item j ��,� = rating value of item j by user i ��,� = predicted rating value of item j by user i S�̅ = mean total rating value for user i �̅� = mean rating value for user i �� = standard deviation of rating values for user i $
�, �� = weight between active user a and user i] = number of predictions made by one algorithm d = number of ratings expected to be predicted by one algorithm

Parameters:

K = total number of clusters for items set I

α = training ratio of experimental ratings set jk @�, @", @A, @B = threshold parameters to filter neighbors for user i in condition (4)

Table 7-1: Notation and Terminology in this article

A Computational model for Trust-based Collaborative Filtering Ch.7: Appendix

21

7.2 Appendix-B: Experimental Results

Training

ratio α

Threshold

parameters

(pq, pr, ps)

Number

of

cluster K

MAECM MAETrust-1 MAETrust-2 MAETrust-3 Coverage

0.9

(0.4, 0.6, 0.6)

10 1.35885 1.3606 1.35972 1.35919 0.23991

20 1.50017 1.49752 1.49961 1.49702 0.146

30 1.47728 1.47516 1.47709 1.48479 0.13353

(0.5, 0.5, 0.5)

10 1.37709 1.37674 1.37782 1.37999 0.21717

20 1.53767 1.53592 1.53734 1.53745 0.12546

30 1.52705 1.52434 1.52665 1.52432 0.11519

(0.6, 0.4, 0.4)

10 1.33374 1.33483 1.33469 1.33434 0.15334

20 1.47678 1.47657 1.47651 1.476 0.08584

30 1.42795 1.42739 1.4285 1.42783 0.0785

(0.7, 0.3, 0.3)

10 1.28044 1.28159 1.28113 1.28131 0.12913

20 1.37302 1.37211 1.37277 1.37163 0.06897

30 1.32126 1.32096 1.32084 1.32246 0.06163

0.7

(0.4, 0.6, 0.6)

10 1.37691 1.37451 1.37537 1.38091 0.21037

20 1.34935 1.34606 1.34654 1.35982 0.11532

30 1.37676 1.37731 1.37537 1.38336 0.10532

(0.5, 0.5, 0.5)

10 1.38256 1.37971 1.38101 1.38703 0.19484

20 1.38783 1.38338 1.38503 1.39552 0.10321

30 1.41474 1.41508 1.41332 1.41958 0.09189

(0.6, 0.4, 0.4)

10 1.36404 1.36296 1.3629 1.36921 0.14797

20 1.3419 1.33821 1.33961 1.34733 0.06925

30 1.29522 1.29565 1.29384 1.29796 0.05977

(0.7, 0.3, 0.3)

10 1.3495 1.3496 1.34949 1.35044 0.12428

20 1.34179 1.3423 1.34154 1.3432 0.05635

30 1.30595 1.30702 1.30572 1.30736 0.0466

0.5

(0.4, 0.6, 0.6)

10 1.42088 1.42178 1.42094 1.4206 0.17919

20 1.42398 1.42334 1.42322 1.42439 0.10337

30 1.29656 1.29741 1.29588 1.29697 0.08518

(0.5, 0.5, 0.5)

10 1.44423 1.44491 1.44411 1.44475 0.16627

20 1.44042 1.44061 1.44018 1.44088 0.09198

30 1.28709 1.288 1.28689 1.28756 0.07174

(0.6, 0.4, 0.4)

10 1.40063 1.40079 1.40049 1.40101 0.13176

20 1.37934 1.37978 1.37932 1.37921 0.06528

30 1.17372 1.17402 1.17354 1.1735 0.04913

(0.7, 0.3, 0.3)

10 1.36532 1.36552 1.3652 1.36579 0.11544

20 1.32714 1.32737 1.327 1.32742 0.05661

30 1.17834 1.17851 1.17825 1.17853 0.04386

Average value 1.372653 1.372154 1.372151 1.374407 0.112212

Table 7-2: Complete experimental results on MAE and Coverage when choosing different parameters

