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Abstract 

The inherent weakness of the data on user ratings collected from web, such as sparsity and 

cold-start, has limited the data analysis capability and prediction accuracy in recommender 

systems (RS). To alleviate this problem, trust has been incorporated in collaborative filtering 

(CF) approaches with encouraging experimental results. In this paper, we propose a 

computational model for trust-based CF combined with k-means clustering, k-nearest 

neighbor (kNN) and three different methods to infer trust, based on a detailed data analysis of 

hotel dataset collected from Booking.com. We apply this model on users’ ratings of hotels and 

show its feasibility by comparing the testing results with conventional CF algorithm using 

evaluation metrics Mean Absolute Error (MAE) and prediction coverage. Our experimental 

results indicate that the use of trust can improve prediction accuracy if the definition of trust is 

reasonable enough. 
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1 Introduction 

1.1 Problem description 

Recommender systems (RS) are software tools and techniques providing suggestions for 

items to be use of a user [1]. Although collaborative filtering has proven to be one of the 

most effective techniques to be incorporated into RS, it still suffers from the inherent 

weaknesses existed in raw data, such as data sparsity. Data sparsity refers to the situation 

that users only rate a small portion of the available items, thus resulted in a sparse user-

item matrix where we can hardly find co-rated items between users. For instance, in our 

case, a large number of ratings on hotels were collected from registered users of the well-

known accommodation reservation website Booking.com
1
, however, only 5% of users in 

the datasets rated more than one hotel, the lack of prior ratings makes it fundamentally 

difficult to find enough number of similar users and make accurate predictions for an 

individual with conventional collaborative filtering method. On the other hand, due to the 

sparse ratings matrix with huge number of null values, large amount of computer memory 

will be wasted to store the useless values.  

Many research works has shown a rising interest in incorporating trust into recommender 

systems to solve this problem, mainly by quantifying trust into numerical values and 

build a web of trust (WOT) for each user, using trust inference and trust propagation. The 

effectiveness of trust has been proved for many times, that it can improve the prediction 

accuracy efficiently. However, there was not a stationary definition for trust in RS. Thus 

we want to explore novel methods to define trust and verify the feasibility of trust when 

combine it with collaborative filtering algorithm, to see how much effect it has on 

improving the prediction accuracy.  

1.2 Solutions 

In this paper we propose a computational model with trust-based CF to alleviate the 

sparsity problem existed in our datasets, as well as verifying the feasibility of using trust. 

First, large amount of real data was collected from Booking.com and has been analyzed 

from different angles using JMP software. Secondly, all hotels (items) were classified 

into different clusters based on their attributes with k-means clustering technique and 

denoted by their cluster id. This idea is enlightened from our data analysis result, as well 

as from a literature review [15], which we will introduce in section 2.3 in detail. Thirdly, 

for each testing user chosen from dataset, we find a group of neighbors (k-nearest 

neighbor) who have similar preference based on their commonly rated clusters and prior 

rating patterns. Predictions were made based on the conventional CF formula (section 

3.1), in which the rating value can be calculated from previous ratings of neighbors. At 

last, we evaluate and compare the performance of predictions by two metrics: mean 

absolute error (MAE) and prediction coverage (section 4.2). 

To make the prediction results more accurate and verify the feasibility of trust, trust was 

incorporated in the third step in computation procedure. Trust is an assumed reliance on 

some people or things that they will not fail us. Here we developed three methods to infer 

trust based on users’ information based on different assumptions. The first assumption we 

made is that users whose rating values are more proximate to the total rating value of 

hotel itself, are more trustworthy than others. Second assumption is based on the group 

type of a user, e.g., family with children is more trustworthy than solo traveler when 

giving rating to a hotel. Third assumption is that experienced users who has rated more 

                                                      
1
 Source: http://www.booking.com 
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items before are more trustworthy. Users who were considered to be more trustworthy 

were assigned a higher trust value. Then we adjust the CF formula by replacing the 

weights with trust values of neighbors, to see if the use of trust indeed works well in 

improving prediction accuracy. 

1.3 Evaluations 

Evaluation metrics (section 4.2) used in this paper are Mean Absolute Error (MAE) and 

prediction coverage, which are commonly used within the context of RS. MAE is the 

average absolute deviation of the actual rating values to the predicted values, thus the 

lower the MAE, the more accurately the RS predicts. Coverage is the percentage of 

hidden ratings that an algorithm was able to predict, and a higher coverage indicates 

better result. 

Evaluation results (section 4.4) from our experiments have indicated that although the 

improvement of prediction accuracy is not very significant, the use of trust indeed helps 

to improve the accuracy of predicted rating values, as long as the measurement of trust is 

rational enough, e.g., Trust-1 and Trust-2. Parameters like the number of clusters K also 

act as an important role in prediction accuracy. Experimental results from our case 

indicate that K=10 performs better than K=20 and K=30.  

1.4 Conclusions 

In this paper a computation model for trust-based CF was proposed, in which k-means 

clustering, k-nearest neighbor and three measurements of trust were combined together to 

improve prediction accuracy on a sparse rating dataset. Our contributions are mainly 

focused on the test and verification of trust and an algorithm which avoids the waste of 

computer memory caused by large amount of null values. Future work of our thesis will 

be centralized in adjusting the method with other datasets, exploration of a more efficient 

way to incorporate trust into RS and the use of trust propagation.  

The remainder of this paper is organized as follows. Section 2 surveys existing research 

work on recommender systems, collaborative filtering and the rising interest to 

incorporate trust into CF. Section 3 provides detailed descriptions on conventional 

collaborative filtering method, weight computation method for neighbors normally 

incorporated into CF, as well as our trust-enhanced CF method. In section 4 we introduce 

our hotel data sets and the sparsity problem caused by it, evaluation metrics including 

mean absolute error (MAE) and Coverage, algorithm with regard to implementation steps 

and experimental results with detailed analysis. Section 5 provides a conclusion on what 

we have done, our contributions and future work. References and appendix will be given 

in section 6 and 7. 

    

 

 

 

  



A Computational model for Trust-based Collaborative Filtering                                                                   Ch.2: Related Work 

 

 

3 

 

2 Related Work 

2.1 Recommender systems 

Recommender systems (RS) [7] emerged as an independent research area since the 

appearance of collaborative filtering in the mid-1990s [8]. The first recommender system, 

Tapestry [6], originally designed to improve efficiency of E-mail filtering by 

incorporating other users’ opinions in the process, can be traced back to 1992. RS 

normally focused on giving suggestions on items towards individuals who may lack 

experiences before. Nowadays it is still a popular area to be developed, not only because 

it can address the information overload problem, but also owing to the far-ranging 

applications it has brought to us. Examples of such applications can be found everywhere: 

helping customers decide which products to purchase in an E-commerce website 

(Amazon.com [10]), recommending songs to music lovers in a radio website (Last.fm 

[5]), and mobile recommender systems using spatial data [11].  

Usually recommender systems were classified according to techniques that have been 

incorporated to them. Based on this, we typically have three different types of 

recommender systems: collaborative filtering (CF), content-based and hybrid system. The 

main difference between collaborative filtering and content-based approach is that the 

former one recommends items that other similar users have liked by computing similarity 

values between users. As for content-based technique, we only recommend items which 

are similar to the items one user has liked in the past. One typical hybrid recommender 

system is Fab [3], by combining both techniques, it may alleviate some weaknesses found 

in each approach. A state-of-the-art introduction of recommender system can be found in 

[1].  

2.2 Collaborative Filtering 

Many literature review have indicated that collaborative filtering is one of the most well-

known, successful and widely implemented techniques [1, 4, 13, 14, 19]. The biggest 

advantage of CF over content-based approach is that it only relies on opinions on items 

described by users [19]. Instead content-based systems require more detailed descriptions 

of each item, so as to generate similarities between items. Two general classes of CF 

algorithms were examined in [12]: Memory-based algorithm and model-based algorithm. 

Model-based algorithm can be viewed as calculating the expected value of a vote from a 

probabilistic perspective, based on what we know about the user. Related methods 

include cluster models and Bayesian networks. As for the memory-based algorithm, we 

will describe it explicitly in section 3.1.  

However, CF approach still suffers from three fundamental challenges [20]: data sparsity, 

cold-start and scalability. Data sparsity refers to the situation that users only rate a small 

portion of the available items, thus resulted in a sparse user-item matrix where we can 

hardly find co-rated items between users. In cold-start problem, the lack of historical 

information occurs on new items or users consequently lead to a ‘dumb’ state in RS, that 

the system fails to consider users with an empty file or items no one has previously rated. 

Scalability entails a large amount of computation when there are millions of users and 

items, which is usually the case in reality. In this paper we focused on data sparsity and 

proposed a model to alleviate this problem.  

Several approaches have been adopted in previous work to cope with this challenge and 

received moderately good results. As we mentioned before, hybrid algorithm combing 

both CF and content-based techniques can alleviate weakness in both approaches. 
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Dimensionality reduction methods, such as Singular Value Decomposition (SVD), Latent 

Semantic Indexing (LSI), reduce the dimensions of matrix by getting rid of unimportant 

users or items [22]. Huang et al [21] applied an associative retrieval framework and 

spreading activation algorithms to deal with the sparsity problem. Manos et al [17] used 

trust inference to alleviate this problem. 

2.3 Trust in RS 

A rising interest in trust-enhanced recommender systems was found in recent research 

work [1, 14, 15, 17, 19]. Trust is a common concept in our daily life and it can be defined 

in various ways, B. Noteboom claims that trust is an expectation that things or people will 

not fail us, or the neglect or lack of awareness of the possibility of failure [23]. Another 

notion of trust was presented by P. Sztompka, “It is a type of bet taken on the issue of 

uncertain future activities of other people”[24]. For trust in recommender systems, there 

is no stationary definition for it. The main strength of applying trust into recommender 

systems is to quantify trust into numerical values and build a web of trust (WOT) for each 

user, using trust inference and trust propagation. Examples of major algorithms for 

building trust network are Moletrust [25] and Tidaltrust [2]. 

J. Wang [15] proposed a method to generate trust by incorporating the taste of users’ on 

choosing items. The tastes of users were implied from the classification of items, based 

on the intuition that users usually trust those who have similar taste with them.  The more 

items that a user rated to a certain cluster of items, the more interest a user showed to 

them. After that the trust metric is developed from the taste set of a user in all clusters of 

items. Then trust was propagated throughout a social network to include more similar 

users. Finally ratings were predicted by summing up all rating values from similar users 

and the results were evaluated by using MAE and Coverage. Results from experiments 

have indicated that the use of trust can decrease MAE and increase Coverage in a sparse 

dataset compared with User Similarity-based CF and Item Similarity-based CF. The k-

means clustering method we used in our paper is enlightened by the similar taste ideas 

from this literature. 
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3 Methodology 

3.1 Conventional Method 

Normally, the task in collaborative filtering can be of two forms [13]: prediction and 

recommendation. Prediction is a numeric value expressing the predicted rating score on 

an item from a particular user (we will denote this user as the active user). 

Recommendation is to recommend a list of items the active user will like probably. We 

choose prediction as our task to implement with the hotel data set, i.e., predict rating 

values within the same scale (e.g., from 0 to 10) for the active user on hotels he or she has 

no experience before. 

Collaborative filtering usually follows two steps [26]:  

1. Find neighbors who share the same rating pattern for the active user	�. 

2. Assign a weight for each neighbor found in the first step of user � and use their 

ratings to calculate predictions for user	�. 

The two steps above can be normalized into several equations and we use the classical 

memory-based CF formula [18] as the basis of our algorithm:  

��,� = �̅� + ∑ �
�,�����,���̅������∑ �
�,������                                                (1) 

where	��,�  is the predicted rating of the active user � for item �. �̅�  and �̅�  is the mean 

rating score for user �  and user �  respectively. The mean rating value and standard 

deviation for user � can be defined as: 

�̅� = �|��|∑ ��,��∈�� , �� =  �|��|∑ ���,� − �̅��"�∈��                                 (2) 

Here �� is the set of items on which user � has rated and |��| represents the number of 

observations in a set. ��,� is the rating score on item � from user �. In Equation (1), # is the 

number of users in the collaborative filtering database with nonzero weights. $
�, �� is 

the weights of # similar users and it can be defined in several different ways: 

� K-nearest neighbor 

 $
�, �� = %1 �'	� ∈ (�0 *+,*                                                  (3) 

� Pearson correlation coefficient $
�, �� = ∑ ���,� − �̅�����,� − �̅��� ∑ ���,� − �̅��"∑ ���,� − �̅��"��
 

� Cosine distance $
�, �� =- ��,� ∑ ��,.".∈�/
��,� ∑ ��,.".∈���  

Pearson correlation coefficient (PCC) has proven to be the most efficient and accurate 

way to express the similarity of rating pattern between two users. However, it requires 

user �  and user �  have at least two co-rated items, otherwise 	$
�, �� = 00 . For cosine 

distance, $
�, �� = 1 if � equals to 1, i.e., when user � and user � have only one co-rated 

item, $
�, �� equals to a constant. In consideration of actual situation in our case, most 
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users lack experience with accommodation in distinct hotels, i.e., it is difficult to find 

more than one co-rated items between two users. We denote this as the sparsity problem 

in our data set and we will explain it in detail in section 4.1. In the light of this, we choose 

k-nearest neighbor as weighting method due to its flexibility in defining neighbors. 

The k-nearest neighbors (kNN) rule [9] is one of the simplest and oldest methods for 

pattern classification. Its performance crucially depends on the distance metrics used to 

identify nearest neighbors. Equation (3) is a simple expression of how kNN can be 

combined with CF algorithm. If user � belongs to the neighborhood of user �, i.e., � ∈ (�, 

we simply set $
�, �� = 1 , otherwise $
�, �� = 0 . The conditions of how can we 

determine if a user belongs to the neighborhood or not will be introduced in the next 

paragraph. 

To extend the scope of neighbors of users, we use k-means clustering to classify items 

into 1 clusters. K-means clustering is a term within the context of data mining, which 

aims to partition n observations into k clusters in which each observation belongs to the 

cluster with the nearest mean [27]. Here we partition the item set I into 1  clusters 

according to nine numerical attributes of each item: star level, number of total votes, 

average score, rating values corresponding to five aspects-clean, comfort, location, 

service, staff and value for money. This step is implemented by JMP software 

automatically. A detailed description of these attributes can be found in section 4.1. We 

name this process as ‘Fuzzification of items’ because all items were fuzzified into 1 

clusters and users who have co-rated hotels in the same cluster can be correlated together. 

In this sense, much more neighbors can be found even when the active user has voted 

only one item. According to our data set, the scope of neighbors for an active user � can 

be defined as follow:  

2 3|4�| − |4�|3 ≤ 67�|4� ∩ 4�| ≥ min=|4�|, |4�|> × @"|�̅� − �̅�| ≤ @A, |�� − ��| ≤ @B
C�DEFGHIIIJ			� ∈ (�                           (4) 

Here 4� denotes the set of clusters to which �� belongs. |4�| is the number of	4�. @� is a 

threshold parameter combined with 1. 4� ∩ 4� is the intersection set of clusters that �� 

and �� falls in at the same time. @" refers to a percentage parameter, e.g., 50%. @A and	@B 

are two thresholds for the distance of mean value and standard deviation between two 

users. 

 

Table 3-1: Hotel & Cluster Ids of User a (ID: 5698) 

 

Table 3-2: Hotel & Cluster Ids of User i (ID: 43936) 

  

User ID

Hotel ID 181 642 865 1520 2881 3027 3662 3936 4563 5115

Cluster ID 1 6 18 4 11 20 11 12 11 11

Rating Score 8.8 7.1 9.2 7.5 7.5 9.6 8.3 6.5 7.5 8.3

5698

User ID

Hotel ID 1577 2600 2718 2964 3408 3616 3837 3926 4818 5072

Cluster ID 6 20 3 5 12 5 3 3 1 3

Rating Score 7.1 8.3 8.3 10 10 7 10 8.8 10 3.8

43936
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4� {1, 4, 6, 11, 12, 18, 20} 4� {1, 3, 5, 6, 12, 20} 4� ∩ 4�  {1, 6, 12, 20} |4�| 7 |4�| 6 3|4�| − |4�|3 1 �̅� 8.03 �̅�  8.33 |�̅� − �̅�| 0.3 �� 0.978717982 �� 1.977119116 |�� − ��| 0.998401134 

Table 3-3: Computation results of example 

Give a specific example to interpret the equation above. Here we have two users’ 

information of � and 	�  about which hotels they have rated previously (Table 3-1 and 

Table 3-2). From these two tables we can see that they have no co-rated hotels even when 

they have rated 10 hotels, which is a relatively big number in our dataset. However after 

all items were classified into 1 clusters, e. g., 1 = 20, they shared some common cluster 

ids. 

Suppose both of them have voted 10 items, then user �’s cluster list for these items might 

be: 1, 4, 6, 11, 12, 18, 20 (7 clusters) and user �’s list is: 1, 3, 5, 6, 12, 20 (6 clusters). If 

we set @� = 10, so the first condition in Equation (4) is satisfied: |7 − 6| ≤ "0�0. After that 

we select the common clusters from user �  and user � ’s cluster list: 1, 6, 12, 20 (4 

common clusters). So the second condition is satisfied as well (if @" = 50% ): min=7, 6> × 50%  which equals to 3 is less than 4, the number of common clusters. 

Finally we compute |�̅� − �̅�| and |�� − ��| and compare them with @A and @B. Here if we 

set both of them as 0.5, then the third condition in Equation (4) is not satisfied because 

though they shared a similar mean value, their standard deviation is not similar with each 

other. 

The first equation entails that the two users should have similar level in estimation for 

items, i.e., if user � rated only one item but user � rated more than 20 they are not at the 

same level so they can’t be similar users, i.e., they are not neighbors. The second requires 

the two users should share a relatively big proportion of common clusters in items, i.e., 

they have similar taste when choosing items to use. The third condition indicates that the 

mean value of ratings from active user � should be similar with user �, i.e., they have 

similar pattern in rating items, both in the case of mean value and  standard deviation. 

When implementing the CF algorithm in section 4.3, each time we apply this 

computation method on the two users that we select from our database, to compute the 

similarity between them and filter neighbors for the active (testing) user �. And this is the 

conventional method because we set $
�, �� = 1 here. In the next section 3.2, we are 

going to incorporate trust by changing the weight computation method $
�, ��. 
3.2 Trust-enhanced Method 

After making rating predictions for the items used by users with conventional method, 

another question was triggered naturally: Can we make the predicted results more 

accurate? The answer is undoubtedly true. Past experiences in attempting to incorporate 

the concept of trust into recommender systems have shown satisfactory results in 

improving prediction accuracy. In some researches, trust information already exists 

between users in the database therefore there is no need to infer trust value. In our case, 

trust inference is still a problem that we need to solve. Here we define trust value for a 

user � as	S�T,S� and it can be generated from three different angles based on our data sets: 
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� Trust-1: S�T,S� equals to the distance between the mean rating value �̅� and the total 

mean rating value S�̅ for user i. As can be shown in Equation (5), we simply define S�T,S� as the reciprocal of the absolute distance between �̅� and S�̅ for user i. S�T,S� = �|�̅��U̅�|                                                      (5) 

The intuition behind this computation is that if user i’s actual rating value is nearly the 

same as the total rating value then user i is more trustworthy, i.e., S�T,S� is allocated a 

relatively large value than other users. On the other hand, if the distance between �̅� 
and S�̅ is big, then user i’s opinion is less trustworthy. The total rating value S� can be 

considered as the most objective and truthful rating value for an item	�, as described in 

section 4.1, due to the fact that it is the average rating value generated by hundreds of 

users who have used item �. And the mean total rating value S�̅ can be defined as below:    S�̅ = �|��|∑ S��∈��                                                       (6) 

� Trust-2: S�T,S�  is determined by the group type of user	�, e.g., family with children or 

couple usually has higher trust value than group of friends. Stemmed from this idea, 

we assigned different values for each user according to their group type and listed 

them in Table 3-4. 

Group type Group id VWXYVZ Percentage Count 

Family with young children FY 70% 6.8% 7686 

Family with older children FO 70% 8.7% 9945 

Group of friends GF 40% 18.5% 21056 

Young couple YC 55% 21.3% 24276 

Solo traveler ST 50% 22.2% 25276 

Mature couple MC 60% 22.5% 25599 

Total - - 100% 113838 

Table 3-4 Trust value based on different group types and their percentage 

From Table 3-4 we can see that users whose group type is family with children or 

mature couple were assigned a relatively big trust value, while group of friends and 

solo traveler were allocated a relatively small value. This is on the basis of our 

common sense that family with children usually needs to think about the children’s 

feelings and will probably give more objective and impartial ratings. Experienced 

older people like mature couple’s judgment are more trustworthy than young people as 

well. 

� Trust-3: S�T,S� can be evaluated by the number of items that user � has voted	|��|. We 

assume that users who have more experience should be more trustworthy. Hence we 

simple define S�T,S� as |��|, as indicated in Equation (7): S�T,S� = |��|                                                       (7) 

The next step of out trust-enhanced method is simply to adjust weight computation 

measure by replacing $
�, �� with S�T,S� in Equation (1). Thus we have a new Equation 

(8) which entails the effect of trust: 

��,� = �̅� + ∑ U�[GU����,���̅������∑ U�[GU�����                                            (8) 
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The intuition behind this computation is that users who have higher trust value will 

account for a greater proportion when giving suggestions to the active user	�. In the 

former situation, $
�, �� = 1 is a constant so that each neighbor account for the same 

proportion when giving suggestions to the active user	�. Therefore we assume that this 

adjustment on weight computation will make the predictions more accurate.  

3.3 Summary 

In this section firstly we introduced the conventional collaborative filtering method, in 

which we apply the k-nearest neighbor to search similar users combined with k-means 

cluster, instead of using the commonly used PCC or cosine distance. In section 3.2, for 

the purpose of making predictions more accurate, three different methods of trust 

inference were measured and incorporated into the weight computation step. In the next 

section, we are going to introduce the hotel datasets, tools and sparsity problem lies in our 

dataset. Evaluation metrics and algorithms will be formulated as well and we compare the 

effect of incorporating different measurements of trust into the CF algorithm by doing 

experiments separately with conventional method (CM), Trust-1, Trust-2 and Trust-3. 

Finally an empirical analysis will be given on the strength of experimental results as well.  
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4 Experiment 

4.1 Datasets and Tools 

The purpose of this section is to implement and compare the conventional method with 

trust-enhanced method presented in section 3, based on our hotel datasets. Our hotel 

datasets were generated from Booking.com, which is an informative website that provides 

travelers with accessible accommodation. It was based in Amsterdam in the Netherlands 

and supported internationally by offices in over 50 countries around the world. 

Established in 1996, it offers over 280,000 hotels and apartments in 180 countries and 

attracts over 30 million unique visitors each month at present. More than 18 million 

unbiased reviews from real guests can be found from Booking.com up to now. 

We randomly selected a number of rating records from hotels located in 8 cities in 

Europe from May, 2011 till July, 2012 to form the original dataset. These cities are 

Barcelona, Berlin, London, Paris, Prague, Rome, Stockholm and Zürich. After 

fundamental data analysis and processing, unimportant columns and duplicated rows 

were removed from original dataset, totally 123,296 ratings were obtained from 113,838 

users and 5,291 hotels, ranging from 2.5 to 10.0. This leads to the sparsity problem that 

we have mentioned previously, because most users’ experience were not enough to 

generate a reasonably distributed dataset: 95% of all guests reviewed only one hotel, as 

indicated in Table 4-1.  

Number of hotels 

one user has rated 1 2 3 4 5 6 7 8 9 10 … 

Number of users 107922 

(95%) 
4558 

(4%) 
778 

(0.7%) 248 110 52 42 24 17 9 … 
 

Table 4-1: Distribution of number of hotels that one user has rated 

 �� �" �A �B �\ 

T� 0 7.5 0 0 0 T" 0 0 0 6.2 0 TA 0 0 0 0 0 TB 9.1 0 0 0 0 T\ 0 0 0 8.0 0 

Figure 4-1: Example of sparse user-item rating matrix 

To illustrate the sparsity problem more specifically, we use an example of rating matrix 

to represent our data. In Figure 4-1, rows of the matrix denote users and columns denote 

items. Therefore we have 5 users and 5 items as well as the ratings from users to related 

items. Here ‘0’ denotes null value, which means the user has not used this item yet. 

Obviously there are much more ‘0’ than non-zero values in a sparse rating matrix. In 

practical situations, this problem will be much more serious due to huge number of users 

and items. This weakness lies in data has disadvantages from two aspects when CF 

algorithm is applied to make recommendations. Firstly, sparsity makes it difficult to find 

co-rated items for two users, as indicated in Figure 4-1, only T" and T\ have co-rated 

item	�B, thus making it difficult to use the effective similarity computation method such 

as Pearson Correlation Coefficient (PCC). Secondly, huge number of useless zeros will 

occupy a lot of memory and decrease the operating speed of computers. To this end, we 
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develop a method to store the data instead of using rating matrix and memory can be 

saved as well.   

For the convenience of processing data and programming, the original dataset was 

divided into three co-related sets: Rating set, User set and Hotel set. Table 4-2, 4-3 and 4-

4 illustrates detailed description of these datasets. 

 User id Hotel id Rating score 

1 1 3421 7.5 

… … … … 

123296 113838 4161 9.6 

Table 4-2: Rating set 

 User id User name User location Group id Group name 

1 1 ××× ××× GP Group of friends 

… … … … … … 

113838 113838 ××× ××× ST Solo traveler 

Table 4-3: User set 

Each user belongs to a specific type of group. These groups are: family with young 

children (FY), family with older children (FO), group of friends (GF), mature couple 

(MC), solo traveler (ST) and young couple (YC). This attribute can be used to assign trust 

value for each user as described in section 3.2. 

 
Hotel 

id 

Hotel 

name 
City 

Total 

number 

Star 

level 

Total 

score 

Clean 

score 

××× 

score 

Value for 

money score 

Cluster 

id 

1 1 ××× ××× 29 3 8.1 7.8 … 8.2 11 

… … … … … … … … … … … 

5291 5291 ××× ××× 411 5 8.1 8.7 … 7.1 12 

Table 4-4: Hotel set 

In hotel dataset, there are 9 numerical attributes corresponding with each hotel, i.e., total 

number, star level, total score, clean score, comfort score, location score, service score, 

staff score and value for money score. Total score can be viewed as the most accurate 

evaluation of a hotel by reason of it is based on rating scores from all guests who have 

reviewed it as described in Trust-1 in section 3, and total number explained how many 

users have contributed on this total score. Star level is commonly employed to categorize 

hotels, usually on a scale from 1 to 5 stars. In our dataset, 0 star means no information 

about star level for a hotel. Cluster id is on a scale from 1 to 1, which were generated 

based on the 9 numerical attributes of hotels.  

We use JMP
®

 Pro 10.0.0 to explore and sort data into desired form, as well as generate 

cluster id for hotels with k-means clustering. After that we implement algorithms (section 

4.3) with Microsoft Visual C++ 2010 Express.  

4.2 Evaluation Metrics 

For the purpose of evaluating and comparing the performance of each algorithm, we 

follow the most commonly used approach of hiding a certain percentage of rating scores 

from the dataset then applying each algorithm in turn to predict the value of hidden 

ratings. In this case the accuracy of each algorithm can be evaluated from the difference 

between actual rating value and predicted value. We apply two metrics which are 
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commonly used in the field of recommender systems to evaluate each algorithm: Mean 

Absolute Error (MAE) and Coverage [13, 14, 17, 19]. 

� Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is the average absolute deviation of the actual rating 

values to the predicted values as can be shown in Equation (6), where ��,�  is the 

predicted rating value that user � give to item �, ��,� is the actual rating value and ] is 

the number of hidden ratings which are able to be predicted by the algorithm. Thus 

the lower the MAE, the more accurately the recommender algorithm predicts user 

ratings because the predicted values do not vary very far from true ratings. 

^_` = ∑ 3a�,����,�3b��� c                                            (6) 

� Coverage 

Another important metric to estimate recommender engines is coverage for rating 

predictions, which is simply the percentage of hidden ratings that an algorithm was 

able to predict. As shown in Equation (7), ] refers to the number of predictions made 

by the algorithm and d is the total number of hidden ratings, which is the requested 

number of predictions. As a result, higher coverage values indicate an algorithm can 

provide a relatively complete prediction for users. efg*��h* = ci                                                 (7) 

4.3 Algorithm 

In this section a detailed algorithm was given to implement the CF method and trust –

enhanced techniques described in methodology part. Mainly it aims at finding neighbors 

for hidden users and making prediction for them. Evaluation of predicted results was also 

included in this algorithm. Implications of symbols that used in this algorithm can be 

found in Appendix-A (section 7.1). 

When executing the computation steps in this algorithm, we vary different parameters 

that affect the selection of neighbors and prediction results. Thus we run this algorithm 

for 36 times and each time we get different MAEs and Coverage (see Appendix-B). We 

will analyze these results in detail in the next section and show the effect of incorporation 

of trust, as well as the effect of changing parameters.  

 

 

 

 

 

 

 

  

Set jk = ∅,jUk = ∅,mUk = ∅,(� = ∅,n� = ∅. 

For each ��,� in j, if |��| > 1, add ��,� into jk. 
Randomly hide (1- α) percentage ratings from jk as test data, add them into jUk . 
For each ��,� in jUk , add user i into mUk . 
For each user i in mUk , set user i as active user a: 

For each user i in U - a, if condition (4) is satisfied, set $
�, �� = 1	f�	S�T,S�  and 

add user i into (�. 

For each user i in (�, add �� into n�. 

Calculate ��,� for each item j in n� using formula (1). 

Calculate Coverage and MAE based on ��,� in jUk  and n� for each user i. 

Table 4-5: Implementation steps of CF algorithm combined with trust 
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4.4 Experimental Results 

In this section we present our experimental results of applying both conventional method 

and trust-enhanced method to implement the predictions and evaluate the results by using 

MAE and Coverage. First four different weight computation measures were compared 

using MAE to illustrate their prediction accuracy (4.4.1). Sensitivity of the effects of 

varying different parameters on experimental results was analyzed in this part as well. 

These parameters include: training ratio of experimental ratings - α (4.4.2), threshold 

parameters to filter neighbors for experimental users - @", @A, @B (4.4.3) and total number 

of clusters for items - K (4.4.4). For the convenience of comparing experimental results, 

we set @� = 5 in each condition and do not change this parameter. Finally a summary 

was given in 4.4.5 based on the analysis from different angles in this section.  

4.4.1 Performance of different prediction methods 

We implement the collaborative filtering algorithm based on four different weight 

computation measures as described in methodology part. For each prediction method, we 

use training set to implement algorithm and predict rating values for hidden ratings in 

testing set. Parameters α, @" , @A , @B , K were varied and a set of MAE values were 

generated for each method. Then we compute the average value of MAE for each method. 

Figure 4-2 shows the experimental result. It can be concluded from this figure that 

although the difference of performance between each measure is not very significant, the 

use of trust still affects the result. Trust-1 and Trust-2 proves to generate more accurate 

predictions than conventional method on average with our dataset. However, Trust-3 does 

not show advantage in improving prediction accuracy. This result indicates that if we 

inference trust value based on the difference between the actual rating value and total 

rating value (Trust-1) or based on group type of users (Trust-2), the prediction might be 

more accurate than using conventional weight computation method, although in some 

cases the conventional method proves to be the best one (see Table 7-1 in Appendix). 

The average value of coverage (0.112212) here is the same for each method by reason of 

the weight computation measure does not influence the prediction coverage. Only @", @A, @B and K affect the coverage value. 

 
Figure 4-2: Impact of the weight computation measure on collaborative filtering algorithm 

4.4.2 Sensitivity of training ratio α 

The first parameter we varied in our experiment is training ratio of experimental ratings α. 

Totally 15,229 ratings were selected as experimental data from 123,296 ratings. After that 

we set training ratio α as 0.9, 0.7 and 0.5 respectively, with a result of 1,363, 3,798 and 

5,882 ratings hidden from experimental data. Then we find neighbors for the hidden users 
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corresponding to the hidden ratings and make predictions for them using different 

methods. A set of MAE and Coverage values were generated under each condition. 

Figure 4-3 illustrates the average value of MAE and Coverage when α equals to different 

values. It can be observed from this figure that when α = 0.5, the prediction result is more 

accurate on average but the prediction coverage is comparatively lower than in other 

conditions, i.e., a smaller proportion of hidden ratings can be predicted when α is lower. 

When α is set to 0.9, the Coverage is higher but this is at the cost of prediction accuracy.  

 

Figure 4-3: Sensitivity of training ratio α on MAE and Coverage  

4.4.3 Sensitivity of threshold parameters pq, pr, ps 

The second parameters we varied in our experiments are threshold parameters that help to 

filter neighbors for testing users. As described in section 3, @" represents the degree of 

similarity of two users when selecting items to use. Hence if @" was set to a larger value, 

less neighbors can be found for testing users because it requires that two users should 

share a relatively big proportion of common clusters in items, i.e., they have strongly 

similar taste in choosing items to use. @A and @B are threshold parameters help to measure 

similarity of two users when giving ratings to items they have used. @A is threshold for 

the difference of mean rating values between two users and @B  is threshold for the 

difference of standard deviations of rating values. Hence if @A  and @B  were set to a 

smaller value, more users will be filtered out because it requires higher level of similarity 

in rating items. 

We can see from Figure 4-4 that the average MAE and Coverage are also affected by this 

parameter. When we set (@", @A, @B) as (0.4, 0.6, 0.6), more neighbors can be found for 

testing users therefore the Coverage is higher but the prediction accuracy is lower. On the 

contrary, if we set (@", @A, @B) as (0.7, 0.3, 0.3), the prediction result is more accurate at 

the cost of high prediction coverage.  
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Figure 4-4: Sensitivity of threshold parameters  pq, pr, ps on MAE and Coverage 
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4.4.4 Sensitivity of number of clusters K 

The third parameter we varied in our experiments is the total number of clusters for items 

K. Obviously K also influences the prediction accuracy and coverage as can be seen from 

Figure 4-5. The Coverage becomes lower as K is set to be higher. This might be due to 

the reason that items were partitioned into smaller clusters thus making it difficult to find 

similar users who share the same proportion of clusters for items. However, there is no 

obvious pattern about how K affects the mean absolute error. When K = 30, MAE proves 

to be the least one but the Coverage is too low to generate reasonable predictions. When 

K = 10, though MAE = 1.37 is a little higher than MAE = 1.34 when K = 30, the 

Coverage = 0.17 is much better than that in any other conditions. Thus it can be 

concluded that it is better to set K as a relatively small number, e.g., K = 10. 

  

Figure 4-5: Sensitivity of total number of clusters for items K on MAE and Coverage 

4.4.5 Summary 

In this section an empirical analysis on experimental results was given to evaluate the 

prediction accuracy and coverage with different weight computation methods and 

different parameters. It can be concluded from the discussion above that the use of trust is 

able to influence the prediction accuracy as described in other research work, though the 

improvement is not very significant here. Trust-2 proves to perform better than the other 

weight computation methods, which means the weight computation based on group type 

of users is better than the other weight computation methods. A series of parameters also 

act as important roles when using the same algorithm to do predictions for testing users. 

In general, rules from our analysis indicate that there exists a trade-off between the 

prediction accuracy and coverage, i.e., prediction accuracy is at the cost of prediction 

coverage and vice versa. However, when we set number of clusters K as 10, the Coverage 

(0.167472) is much higher than in any other conditions and the MAE is also better than 

the average level in Trust-2 (1.371566 < 1.372151). 
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5 Conclusion 

5.1 What have we done? 

In this paper, a computational model for trust-based collaborative filtering was proposed 

and implemented with our hotel data sets collected from Booking.com. Our goal is to 

explore an effective method which is able to make rating value predictions for users even 

when there exists sparsity problem on data sets and test the effect of trust, in line with the 

conventional CF algorithm.  

On the basis of data analysis, we choose k-nearest neighbor as our method to find 

neighbors with similar preference and taste for testing users, instead of applying the 

commonly used Pearson correlation coefficient or Cosine distance method, for the reason 

that it is difficult to find users with co-rated hotels. Trust has been applied into the 

conventional CF algorithm by adjusting the weight between testing users and their 

neighbors, according to the user information of neighbors like group type or how much 

experience they have. The empirical analysis on experimental results has shown that the 

use of trust can improve prediction accuracy only when the definition of trust is 

reasonable enough, e.g., Trust-1 and Trust-2. Therefore the measurement and inference of 

trust is a critical step when incorporating trust into recommender systems. Parameters like 

number of item clusters K also plays an important role when making predictions for users, 

e.g., K = 10 performs better when considering both MAE and Coverage compared with K 

= 20 and K = 30. 

5.2 Contributions 

Our contributions in this paper are mainly focused on the following aspects. Firstly, we 

collected large amount of data on hotel ratings and user information from a well-known 

accommodation booking website Booking.com, then we analyzed and sorted data from 

different angles using JMP software. Secondly, instead of using the well-known Pearson 

correlation coefficient method to compute weight between users, we apply k-nearest 

neighbor to filtering neighbors which can be easily handled with a sparse rating dataset. 

Thirdly, we make three different assumptions of trust and substitute the neighbor weight 

with them in CF formula, and tested it with our hotel data sets to verify the feasibility of 

trust. Fourthly, we avoid using the conventional rating matrix to store data due to large 

amount of null values, instead we use some data structures like User, Item and Rating 

which helps to save memory when programming with C++. 

One critical aspect of contributions in this paper is that we use k-means clustering to 

assign each hotel a cluster id. This step makes it easier for us to find the relevance of two 

users on their preference when choosing and rating items, on the basis of the common 

clusters of items that two users has voted, and their rating pattern on these clusters. This 

is a direction that maybe we can explore and improve to alleviate the sparsity problem in 

the future. 

5.3 Future Work 

Future work of our thesis work will be centralized in several areas: Can this model be 

applied to other data sets? Is there a more effective way to infer trust that can improve the 

prediction accuracy significantly? What will happen if we apply trust propagation into 

our model? What should be noticed here is the complexity of trust, which was denoted by 

Elizabeth Chang [16], that trust is composed by three fuzzy and dynamic characteristics: 

Implicitness, Asymmetry and Transitivity in trust. However, in our case, asymmetry and 
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transitivity had not been taken into consideration thus this is something that we can 

improve in future work. 

There are several different ways to answer the first question: Can this model be applied to 

other data sets? Due to time limitation, we were not able to generate a relatively 

reasonable distributed dataset, i.e., too many users and hotels generate few ratings. Thus 

if we are able to collect or get a more reasonably distributed dataset from other websites, 

we may test on it and compare with the results from the dataset we used in this paper. 

Some datasets such as Epinions.com provide trust value matrix by itself thus we don’t 

need to infer trust under this case.  

For the method of trust inference, the assumptions that we made in this paper were 

generated based from information in our case thus it has limitations when applying to 

other cases. Therefore we may need to develop a more general method of trust inference 

which can be widely applied. Another inspiration from our experimental results is that 

maybe we can combine Trust-1 and Trust-2 to improve the prediction accuracy because 

both of them act as positive factor when affecting the experimental results. 

Trust propagation is actually the exemplification of the Transitivity characteristic of trust. 

A good example of trust propagation can be found in [17], in which trust was propagated 

according to a weighted sum of plus or minus sign and numerical values of users’ 

similarity. However, it didn’t take the Asymmetry characteristic of trust into 

consideration. Therefore a more improved way of incorporating trust propagation should 

consider both Transitivity and Asymmetry of trust. 
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7 Appendix 

7.1 Appendix-A: Notation and Terminology 

  
Sets: 

U = set of all users in dataset denoted by i, i = {1, …, M} 

I = set of all items in dataset denoted by j, j = {1, …, N} 

R = set of all ratings in dataset denoted by k, k = {1, …, L} �� = set of items on which user i has rated 4� = set of clusters to which �� belongs (� = set of neighbors of user i n� = set of predicted items of user i jk = set of experimental ratings from users whose |��| > 1 jUk  = set of hidden ratings with training ratio α from jk mUk  = set of users whose ratings belong to jUk  
 

Variables: S� = total rating value of item j ��,� = rating value of item j by user i ��,� = predicted rating value of item j by user i S�̅ = mean total rating value for user i �̅� = mean rating value for user i �� = standard deviation of rating values for user i $
�, �� = weight between active user a and user i ] = number of predictions made by one algorithm d = number of ratings expected to be predicted by one algorithm 

 

Parameters: 

K = total number of clusters for items set I 

α = training ratio of experimental ratings set jk @�, @", @A, @B = threshold parameters to filter neighbors for user i in condition (4) 

 

Table 7-1: Notation and Terminology in this article 
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7.2 Appendix-B: Experimental Results 

Training 

ratio α 

Threshold 

parameters 

(pq, pr, ps) 

Number 

of 

cluster K 

MAECM MAETrust-1 MAETrust-2 MAETrust-3 Coverage 

0.9 

(0.4, 0.6, 0.6) 

10 1.35885 1.3606 1.35972 1.35919 0.23991 

20 1.50017 1.49752 1.49961 1.49702 0.146 

30 1.47728 1.47516 1.47709 1.48479 0.13353 

(0.5, 0.5, 0.5) 

10 1.37709 1.37674 1.37782 1.37999 0.21717 

20 1.53767 1.53592 1.53734 1.53745 0.12546 

30 1.52705 1.52434 1.52665 1.52432 0.11519 

(0.6, 0.4, 0.4) 

10 1.33374 1.33483 1.33469 1.33434 0.15334 

20 1.47678 1.47657 1.47651 1.476 0.08584 

30 1.42795 1.42739 1.4285 1.42783 0.0785 

(0.7, 0.3, 0.3) 

10 1.28044 1.28159 1.28113 1.28131 0.12913 

20 1.37302 1.37211 1.37277 1.37163 0.06897 

30 1.32126 1.32096 1.32084 1.32246 0.06163 

0.7 

(0.4, 0.6, 0.6) 

10 1.37691 1.37451 1.37537 1.38091 0.21037 

20 1.34935 1.34606 1.34654 1.35982 0.11532 

30 1.37676 1.37731 1.37537 1.38336 0.10532 

(0.5, 0.5, 0.5) 

10 1.38256 1.37971 1.38101 1.38703 0.19484 

20 1.38783 1.38338 1.38503 1.39552 0.10321 

30 1.41474 1.41508 1.41332 1.41958 0.09189 

(0.6, 0.4, 0.4) 

10 1.36404 1.36296 1.3629 1.36921 0.14797 

20 1.3419 1.33821 1.33961 1.34733 0.06925 

30 1.29522 1.29565 1.29384 1.29796 0.05977 

(0.7, 0.3, 0.3) 

10 1.3495 1.3496 1.34949 1.35044 0.12428 

20 1.34179 1.3423 1.34154 1.3432 0.05635 

30 1.30595 1.30702 1.30572 1.30736 0.0466 

0.5 

(0.4, 0.6, 0.6) 

10 1.42088 1.42178 1.42094 1.4206 0.17919 

20 1.42398 1.42334 1.42322 1.42439 0.10337 

30 1.29656 1.29741 1.29588 1.29697 0.08518 

(0.5, 0.5, 0.5) 

10 1.44423 1.44491 1.44411 1.44475 0.16627 

20 1.44042 1.44061 1.44018 1.44088 0.09198 

30 1.28709 1.288 1.28689 1.28756 0.07174 

(0.6, 0.4, 0.4) 

10 1.40063 1.40079 1.40049 1.40101 0.13176 

20 1.37934 1.37978 1.37932 1.37921 0.06528 

30 1.17372 1.17402 1.17354 1.1735 0.04913 

(0.7, 0.3, 0.3) 

10 1.36532 1.36552 1.3652 1.36579 0.11544 

20 1.32714 1.32737 1.327 1.32742 0.05661 

30 1.17834 1.17851 1.17825 1.17853 0.04386 

Average value 1.372653 1.372154 1.372151 1.374407 0.112212 

Table 7-2: Complete experimental results on MAE and Coverage when choosing different parameters 


