Application of Statistics in Human Geography

--The influence of geographic position on urban development

C-level essay in Statistics, Fall 2006

Department of Economics and Society, Dalarna University

Authors

Boyuan Zhao Hao Luo

Supervisor

Johan Bring

Date

January, 2006
Abstract

In this essay, basing the data of “China Urban Statistics Year Book 2005” and the data of Chinese cities’ longitude and latitude, we analyze the relationship between the urban social geography and the development degree of cities. Various methods of statistics were applied, such as descriptive statistics, classification, etc.

According to the analysis result, selected Chinese cities are divided into 10 classes and their development situation is studied so that the individuality and the commonness of each class could be revealed.

After that, an in-depth analysis is made on the first class and attention is paid to three aspects: population, resources, and environment. To make further study, we analyze the situation of urban population, construction, traffic, water supply, and greening.

In this essay, we use two methods of classification of SPSS, k-means method and hierarchical cluster method. At the same time, we compare two results come from geography data and economical data.

In the end, we hope this essay could give a help and some revelation to Chinese urbanization and regionalization.
Part I

Introduction

In B.C.334, Alexander the Great led his army south across the sea, then east towards the Persian Empire. Geographer Nearcnos went along with the troops, gathering necessary information for a “World Map”. He noticed that along the marching routes, from west to east, the changing of seasons and the sunshine durations were nearly the same. The geographer made an important contribution: for the first time in history, he drew a latitude line on the map. This latitude line started from the Strait of Gibraltar went along the Himalayas and reached the Pacific Ocean. Alexander’s empire collapsed very soon, however in the Egyptian city which named after Alexander the Great, a well-known museum was founded. The old curator Eratosthenes was learned and has mastery of mathematics, astronomy and geography. Through calculation he noted that the circumference of the earth is 46250km and drew a world map with 6 latitude lines and 7 longitude lines on it. From then on, latitude and longitude were used to mark locations accurately.

Thereafter, an inseparable relationship was built between geography and statistics through latitude and longitude lines.

In 21st century, cities are playing a more and more important role in the development of society and economy. Therefore, good management and quick modernization become a momentous meaningful issue that citizens generally pay attention to, both theoretical and practical.
Part II

Description of data

Questions and step-by-step solutions

In this part, the data of the year 2004 selected from “China Urban Statistics Year Book” and the geographical locations of various cities will be integrated through the knowledge of latitude and longitude. All these are to be analyzed using statistical methods and related software.

I. Data gathering and pretreatment

1. Selection of data

This essay focuses on the influence that latitude and longitude factors have on urban development, therefore the existing sort of cities by province will not be used. What we need to do is re-classifying the cities into several regions by the latitude and longitude, so the accurate latitude and longitude information of every city are necessary.

In addition, we need some indicators that can reflect the level of urban development to some extent, so the data about the development of these cities should be gathered.

2. Source of data

In order to meet the need of data mentioned above, the analysis of this essay focuses on the data selected from “China Urban Statistics Year Book 2005” and the latitude and longitude information of various cities.

3. Structure of data

The process of data reduction has the following steps:
First, select several cities and their tables from “China Urban Statistics Year Book 2005”.

Second, establish a table that contains three columns which are names, latitude and longitude of the cities.

At last, attach this table to the tables in “China Urban Statistics Year Book 2005” for analysis.

4. Problems

There are totally 659 cities in “China Urban Statistics Year Book 2005”, however among these cities, the data of 9 cities could not be obtained accurately. According to the principle of data analysis we abandon them. Eventually we get the data of 650 cities.

II. Data transformation

Through some basic data transformation, a table containing 53 variables is confirmed. These variables can be classified into three parts: urban names, latitude and longitude, urban development indices. (List 1)

Considering the possible influence caused by correlation, we will apply the correlation analysis to eliminate unnecessary variables, leaving only the most useful ones. 13 variables are selected to represent urban development and regional advantage from different aspects. Listed as below:

Urban names, latitude, longitude, province codes, population density, urban population, urban area, per capita fund for urban construction and maintenance, per capita public green areas, number of public transportation vehicles per 1000000 population, area of paved roads per 10000 persons, density of paved roads.

Part III

- 5 -
Methods

The main methods used in this essay are cluster methods, such as K-means method and hierarchical cluster method. Clustering is the classification of similar objects into different groups, or more precisely, the partitioning of a data set into subsets (clusters), so that the data in each subset (ideally) share some common trait.

Part IV

Results

A

Geographical clustering

I. Data analysis

1. Descriptive analysis

A table containing 650 rows and 13 columns is established. The results of descriptive analysis using SPSS are listed as below:

Table 1: The descriptive statistics of each variable

<table>
<thead>
<tr>
<th>Descriptive Statistics</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std.Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitude</td>
<td>650</td>
<td>75.49</td>
<td>133.97</td>
<td>114.2158</td>
<td>8.66988</td>
</tr>
<tr>
<td>Latitude</td>
<td>650</td>
<td>18.14</td>
<td>50.80</td>
<td>33.4269</td>
<td>6.95958</td>
</tr>
<tr>
<td>Population density</td>
<td>650</td>
<td>25.00</td>
<td>11195.00</td>
<td>2516.0754</td>
<td>2297.10422</td>
</tr>
<tr>
<td>Urban population</td>
<td>650</td>
<td>2.42</td>
<td>1289.13</td>
<td>52.2434</td>
<td>102.01179</td>
</tr>
<tr>
<td>Urban area</td>
<td>650</td>
<td>10.00</td>
<td>12909.67</td>
<td>600.3818</td>
<td>1239.44341</td>
</tr>
<tr>
<td>Fund for urban construction and maintenance per person</td>
<td>648</td>
<td>3.00</td>
<td>14190.00</td>
<td>1010.5015</td>
<td>1213.77229</td>
</tr>
<tr>
<td>Number of public transportation vehicles per 100000 population</td>
<td>620</td>
<td>0.23</td>
<td>47.97</td>
<td>6.1617</td>
<td>4.69560</td>
</tr>
</tbody>
</table>

- 6 -
<table>
<thead>
<tr>
<th>Area of paved roads per person</th>
<th>650</th>
<th>1.53</th>
<th>48.73</th>
<th>11.0801</th>
<th>5.45099</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paved roads density</td>
<td>650</td>
<td>0.02</td>
<td>15.78</td>
<td>1.6757</td>
<td>1.64742</td>
</tr>
<tr>
<td>Daily living consumption of water per person</td>
<td>649</td>
<td>42.15</td>
<td>803.97</td>
<td>177.3334</td>
<td>86.53371</td>
</tr>
<tr>
<td>Per capita public green areas</td>
<td>649</td>
<td>0.25</td>
<td>47.12</td>
<td>7.2153</td>
<td>4.37324</td>
</tr>
<tr>
<td>Valid N(listwise)</td>
<td>619</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

From the table above, we can find maximum, minimum, mean and standard deviation of 11 variables except urban names and province codes. For instance, it could be seen that these cities range from 75°56’ 24 E to 133°58’ 12 W and from 18°8’ 4 N to 50°48’ S.

2. Choose the number of groups in classification analysis

Basing on the urban latitude and longitude data, we obtain the following graph using SPSS, which means the to-be-researched geographic distribution of cities.

Graph 1: The to-be –researched geographic distribution of cities
Because the analysis focuses solely on cities regardless of the provinces they belong to, we classify the cities by latitude and longitude. Knowing that the amount of data is tremendous, we use K-means cluster analysis and have to choose the number of groups.

The formula to decide the number of groups is the following:

Number of groups= (number of observations) - (the stage after which the distance growth rapidly)

Using the agglomeration schedule of SPSS, we take the distance at the last step (80218.109) as 100% and then transform all the other values to percentage you will see that the distance does not exceed 10% up to 641st step. So the stage after which the distance growth rapidly=640, and the number of groups=650-640=10.

3. Classification analysis

The output is as below:

Table 2: Number of cases in each cluster by K-means clustering method
Final cluster centers are as below

Table 3: The final cluster centers of the variable Latitude and Longitude

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Longitude</th>
<th>Latitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112.25</td>
<td>24.31</td>
</tr>
<tr>
<td>2</td>
<td>117.82</td>
<td>37.40</td>
</tr>
<tr>
<td>3</td>
<td>118.94</td>
<td>29.91</td>
</tr>
<tr>
<td>4</td>
<td>122.98</td>
<td>42.96</td>
</tr>
<tr>
<td>5</td>
<td>86.39</td>
<td>44.56</td>
</tr>
<tr>
<td>6</td>
<td>102.92</td>
<td>37.69</td>
</tr>
<tr>
<td>7</td>
<td>112.30</td>
<td>34.59</td>
</tr>
<tr>
<td>8</td>
<td>80.14</td>
<td>37.35</td>
</tr>
<tr>
<td>9</td>
<td>128.56</td>
<td>45.50</td>
</tr>
<tr>
<td>10</td>
<td>104.35</td>
<td>28.32</td>
</tr>
</tbody>
</table>

According to the output, we get the charts showing from different angles as below, on the graphs, we can see the distribution of each groups on the map.

Graph 2: The distribution of each cluster in different latitude
To make sure if K-means method is a better one, we analyze the data by hierarchical cluster method with Within-group linkage and Squared Euclidean distance. The result is as follow:
Table 4: The average linkage calculated by hierarchical cluster method

<table>
<thead>
<tr>
<th></th>
<th>Number</th>
<th>Percent</th>
<th>Valid Percent</th>
<th>Cumulative Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valid</td>
<td>650</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>89</td>
<td>13.7</td>
<td>13.7</td>
<td>13.7</td>
</tr>
<tr>
<td>2</td>
<td>153</td>
<td>23.5</td>
<td>23.5</td>
<td>37.2</td>
</tr>
<tr>
<td>3</td>
<td>123</td>
<td>18.9</td>
<td>18.9</td>
<td>56.2</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>13.8</td>
<td>13.8</td>
<td>70.0</td>
</tr>
<tr>
<td>5</td>
<td>59</td>
<td>9.1</td>
<td>9.1</td>
<td>79.1</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>6.8</td>
<td>6.8</td>
<td>85.8</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>2.5</td>
<td>2.5</td>
<td>88.3</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1.2</td>
<td>1.2</td>
<td>89.5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>.5</td>
<td>.5</td>
<td>90.0</td>
</tr>
<tr>
<td>10</td>
<td>65</td>
<td>10.0</td>
<td>10.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

The result of the two methods in graphs is as follow:

Graph 4: The cluster distribution by K-means cluster method

Graph 5: The cluster distribution by hierarchical cluster method
As the graphs said, there are not many differences between the results of the two methods, but the k-means method is more same as the provinces of today’s China. So we choose k-means method.

II. Advanced analysis
1. **Summary of computation**

Apply descriptive analysis to the above 10 clusters separately, the outputs are as below (appendix):

Table 5: The geographical property of each cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>No.</th>
<th>CL1</th>
<th>CL2</th>
<th>RL1</th>
<th>RL2</th>
<th>MinL1</th>
<th>MaxL1</th>
<th>MinL2</th>
<th>MaxL2</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>112</td>
<td>112.2</td>
<td>24.3</td>
<td>11</td>
<td>11.3</td>
<td>106.8</td>
<td>117.8</td>
<td>18.8</td>
<td>29.5</td>
<td>13,14,17,18,19,20.23</td>
</tr>
<tr>
<td>2</td>
<td>92</td>
<td>117.8</td>
<td>37.4</td>
<td>10.4</td>
<td>10.3</td>
<td>112</td>
<td>122.4</td>
<td>33.6</td>
<td>43.9</td>
<td>1,2,3,5,6,10,12,15,16</td>
</tr>
<tr>
<td>3</td>
<td>127</td>
<td>118.9</td>
<td>29.9</td>
<td>7.8</td>
<td>9.1</td>
<td>114.3</td>
<td>122</td>
<td>24.4</td>
<td>33.5</td>
<td>9.10,11,12,13,14,17</td>
</tr>
<tr>
<td>4</td>
<td>54</td>
<td>123</td>
<td>43</td>
<td>9.1</td>
<td>11.4</td>
<td>117.5</td>
<td>126.5</td>
<td>39.4</td>
<td>50.8</td>
<td>5,6,7,8</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>86.4</td>
<td>44.6</td>
<td>12.1</td>
<td>6.2</td>
<td>81.3</td>
<td>93.4</td>
<td>41.7</td>
<td>47.9</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>102.9</td>
<td>37.7</td>
<td>12.7</td>
<td>6.5</td>
<td>94.7</td>
<td>107.4</td>
<td>34.3</td>
<td>40.8</td>
<td>5,27,28,29</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>112.3</td>
<td>34.6</td>
<td>8.7</td>
<td>11.2</td>
<td>107.2</td>
<td>115.8</td>
<td>29.6</td>
<td>40.8</td>
<td>3,4,5,12,15,16,17,18,26,27</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>80.1</td>
<td>37.3</td>
<td>12.9</td>
<td>11.9</td>
<td>75.9</td>
<td>88.8</td>
<td>29.3</td>
<td>41.2</td>
<td>30,25</td>
</tr>
<tr>
<td>9</td>
<td>41</td>
<td>128.6</td>
<td>45.5</td>
<td>9.1</td>
<td>7.8</td>
<td>124.9</td>
<td>134</td>
<td>42.5</td>
<td>50.2</td>
<td>7,8</td>
</tr>
<tr>
<td>10</td>
<td>67</td>
<td>104.4</td>
<td>28.3</td>
<td>18.2</td>
<td>10.3</td>
<td>91.1</td>
<td>109.3</td>
<td>22</td>
<td>32.8</td>
<td>17,19,21,22,23,24,25</td>
</tr>
</tbody>
</table>

No. - Number of cities;

CL1- Central location longitude; **CL2**- Central location latitude

RL1- Range of longitude; **RL2**- Range of latitude

MinL1- Minimum longitude; **MaxL1**- Maximum longitude

MinL2-Minimum latitude; **MaxL2**-Minimum latitude

PI-Province code include
Table 6: The economical property of each cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>PD</th>
<th>UP</th>
<th>UA</th>
<th>CM</th>
<th>PT</th>
<th>APR</th>
<th>PRD</th>
<th>CW</th>
<th>GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2694</td>
<td>51.8</td>
<td>384.2</td>
<td>918.6</td>
<td>5.8</td>
<td>10.4</td>
<td>1.8</td>
<td>236.5</td>
<td>8.0</td>
</tr>
<tr>
<td>2</td>
<td>2141</td>
<td>74.6</td>
<td>608.9</td>
<td>1290.1</td>
<td>5.7</td>
<td>14.7</td>
<td>1.7</td>
<td>139.0</td>
<td>7.8</td>
</tr>
<tr>
<td>3</td>
<td>2344</td>
<td>56.5</td>
<td>428.8</td>
<td>1838.9</td>
<td>7.4</td>
<td>13.2</td>
<td>1.9</td>
<td>221.2</td>
<td>8.2</td>
</tr>
<tr>
<td>4</td>
<td>1599</td>
<td>51.4</td>
<td>544.4</td>
<td>584.6</td>
<td>4.8</td>
<td>7.8</td>
<td>0.8</td>
<td>119.4</td>
<td>6.1</td>
</tr>
<tr>
<td>5</td>
<td>2948</td>
<td>13.3</td>
<td>682.7</td>
<td>1234.8</td>
<td>10.3</td>
<td>12.3</td>
<td>2.0</td>
<td>161.0</td>
<td>9.1</td>
</tr>
<tr>
<td>6</td>
<td>3397</td>
<td>38.7</td>
<td>681.8</td>
<td>690.5</td>
<td>5.2</td>
<td>12.3</td>
<td>2.3</td>
<td>162.2</td>
<td>5.9</td>
</tr>
<tr>
<td>7</td>
<td>3968</td>
<td>47.0</td>
<td>364.0</td>
<td>536.8</td>
<td>6.4</td>
<td>10.1</td>
<td>2.2</td>
<td>152.9</td>
<td>6.0</td>
</tr>
<tr>
<td>8</td>
<td>1540</td>
<td>57.8</td>
<td>2507.1</td>
<td>797.8</td>
<td>18.5</td>
<td>16.3</td>
<td>2.5</td>
<td>159.7</td>
<td>9.0</td>
</tr>
<tr>
<td>9</td>
<td>2065</td>
<td>33.1</td>
<td>1022.0</td>
<td>436.2</td>
<td>4.5</td>
<td>8.2</td>
<td>1.6</td>
<td>114.3</td>
<td>7.1</td>
</tr>
<tr>
<td>10</td>
<td>1312</td>
<td>49.2</td>
<td>1261.7</td>
<td>766.7</td>
<td>5.3</td>
<td>8.3</td>
<td>0.6</td>
<td>184.2</td>
<td>6.3</td>
</tr>
</tbody>
</table>

PD- Population density (person per sq km);

UP- Urban population(10000 persons);

UA- Urban area(sq km);

CM- Per capita fund for urban construction and maintenance(Yuan);

PT- Number of public transportation vehicles per 1000000 population();

APR- Area of paved roads per person(sq m);

PRD- Paved roads density(km/sq km);

CW- Per capita daily consumption of water for residential use(L);
GL - Area of public green land per person (sq m)

Table 5 and Table 6 are conclusions of the above 10 tables. From table 15 we can see the geographic locations of the 10 clusters, which represent the geographic distribution traits of the 10 clusters.

2. Basic analysis of ordered quantitative data

Table 7: Ordered quantitative data of economical property in each cluster

<table>
<thead>
<tr>
<th>Cluster</th>
<th>PD</th>
<th>UP</th>
<th>UA</th>
<th>CM</th>
<th>PT</th>
<th>APR</th>
<th>PRD</th>
<th>CW</th>
<th>GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>9</td>
<td>4</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

For further analysis we convert the quantitative data in Table 6 to ordinal data as Table 7. Now we could see the traits of every cluster more clearly. (Appendix)

Cluster 1

Maximum per capita daily consumption of water for residential use

Low urban area

High population density, urban population, per capita fund for urban construction and
maintenance, per capita public green areas.

3. **Advanced analysis of cluster data**

Because the analytical methods applied to every cluster are similar, here we just analyze Cluster 1 as example.

For understandability, we put the locations of the cities of Cluster 1 into the frame of Graph 4 and get the following graph:

Graph 6: The cities location distribution of Cluster 1

It could be seen from Table 4 that the 112 cities of Cluster 1 are in southeast China. These cities belong to 7 provinces which are Hubei, Hunan, Guangdong, Guangxi, Guizhou, Fujian and Jiangxi. Apply correlation analysis to the data except latitude and longitude, and then we get Table 9.

Table 8: The correlation table for economical variables
It could be seen that population density and paved roads density are highly correlated and the correlation coefficient is 0.753. The correlation coefficient between urban population and urban area is 0.609. The correlation coefficient between number of public transportation vehicles per 1000000 populations and per capita daily consumption of water for residential use is 0.529. It has been indicated that cities of Cluster 1 has the following traits:

Maximum per capita daily consumption of water for residential use

Low urban area

High population density, urban population, per capita fund for urban construction and maintenance, per capita public green areas

Table 9: The geographical and economical properties of Cluster 1

<table>
<thead>
<tr>
<th>No.</th>
<th>CL1</th>
<th>CL2</th>
<th>RL1</th>
<th>RL2</th>
<th>MinL1</th>
<th>MaxL1</th>
<th>MinL2</th>
<th>MaxL2</th>
<th>PI</th>
</tr>
</thead>
<tbody>
<tr>
<td>112</td>
<td>112.2</td>
<td>24.3</td>
<td>11.0</td>
<td>11.3</td>
<td>106.8</td>
<td>117.8</td>
<td>18.1</td>
<td>29.5</td>
<td>13 , 14 , 17 , 18 , 19 , 20 , 23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PD</th>
<th>UP</th>
<th>UA</th>
<th>CM</th>
<th>PT</th>
<th>APR</th>
<th>PRD</th>
<th>CW</th>
<th>GL</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>2</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>7</td>
</tr>
</tbody>
</table>

Data in Table 9 are related to Cluster 1 and could prove the result of the correlation
Table 9 reflects urban conditions from the following five aspects: urban population, construction, transportation, water consumption and greening. These five aspects could reflect the important theme of human development in 21st century about population, resources and environment. Here, we call population, resources and environment as “Man-land relation” for short. In the magazine “Economic Geography of China” it was said that the main purpose of optimizing and harmonizing Man-land relation in China is: minimum destruction of environment, maximum protection of resources, steady population, and benefit optimization in harmonious development. The approaches to optimization and harmony of Man-land relation in China are: Popularize environmental education and strengthening consciousness of environmental protection; Cherish lands and explore it to its most potential; Adjust measures to local conditions and make efficient use of the advantages of various natural resources; Establish the environmental accountability system; Bring the development mode of resource saving and consumption moderation into effect; Make more efforts to explore, utilize, renovate and protect resources; Control the population growth strictly and improve population quality by carrying on Family Planning.

Here we introduce the concept of urban management. Mentioned in “Urban management is innovation of modern urban development” by Zhu Tiezhen, vice board chairperson of China Research Society of Urban Development, from the angle of government, urban management means realizing the optimization and market operation of urban natural resources, basic facilities and humanities by means of market economy. Here natural resources refer to urban land, mountain, water and space, etc. Basic facilities refer to urban electricity, paved roads, communication network, etc; Humanities refer to urban human, cultural, technology and government resources, etc. There are several resources that derives from the resources above, such as information, brand, figure and attention resources, etc, which could serve for the urban management. With the development of technology and urban modernization,
the intension and extension of urban management resources are being enriched, new resources will be explored, and the content of urban management will be more and more extensive. The fundamental point of the urban management theory is that cities are valuable entities. Cities are products of productivity growth, social division of labor, changes in superstructure and the relations of production, human labor and civilization. All the carriers that form the urban spaces and functions are related to human wisdom and labor. Therefore, cities are valuable objective existing and treasure accumulated in the history of social development. Also cities are largest state-owned assets. Urban management requires the portfolio of valuable urban capital elements, activation and increment of static assets by market operation so that society and urban economy could further develop.

B

Clustering based on Economic variables

I. Data Analysis

1. The economical variables.
After we got the result comes from geographical data, we use the economical data and reclassify the cities again in order to obtain an all-sided picture of the urbanization and regionalization of China. The economical variables are listed below:

► Population density
► Urban population
► Urban area
► Per capita fund for urban construction and maintenance
► Per capita public green areas
► Number of public transportation vehicles per 1000000 population
2. Choose the number of groups in classification analysis
Basing the formula we discussed in Part A, using the same methods, we transform the data of Agglomeration Schedule which we get at the beginning and consider the increase of each step. The largest increase is 14.21%, as a result, we choose the number of data whose increase does not exceed 10% of 14.21%. For the Group number = 619 - 605 = 14, we choose 14 as the number of clusters.

3. Classification analysis
Choose numbers of clusters as 14 and maximum iterations as 10, the output of K-Means Cluster is listed as below.

Table 10

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.000</td>
</tr>
<tr>
<td>2</td>
<td>1.000</td>
</tr>
<tr>
<td>3</td>
<td>1.000</td>
</tr>
</tbody>
</table>
According to the output of the number of cities in each cluster above, we can see that some clusters, such as cluster 1, 2, 2, 7 and 8, only have cities less than or equal to 3. This kind of classification has nothing to do with the management improvement of our government. In order to fit the guidance meaning of the classification, 5 clusters should be more appropriate.

II. 5 Groups from the Economical data

Choose numbers of clusters as 5 and maximum iterations as 10, the output of K-Means Cluster is listed as below.

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Number of Cases in each Cluster</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77.000</td>
</tr>
<tr>
<td>2</td>
<td>149.000</td>
</tr>
<tr>
<td>3</td>
<td>330.000</td>
</tr>
<tr>
<td>4</td>
<td>57.000</td>
</tr>
<tr>
<td>5</td>
<td>6.000</td>
</tr>
<tr>
<td>Valid</td>
<td>619.000</td>
</tr>
<tr>
<td>Missing</td>
<td>.000</td>
</tr>
</tbody>
</table>

According to the membership of each cluster, we get the 3-D charts listed below:
Graph 7: The geographical distribution of Cluster 1:

Graph 8: The geographical distribution of Cluster 2:
Graph 9: The geographical distribution of Cluster 3:

Graph 10: The geographical distribution of Cluster 4:
Graph 11: The geographical distribution of Cluster 5:

Part V

Conclusions

From the analysis above we can see that advantages and disadvantages of urban community can be revealed by simply classifying cities according to geographic locations (latitude and longitude, etc). Advanced analysis could be applied to the classified cities to show their common and uncommon properties. We should adjust industrial structure properly basing on natural and social conditions of each region at present. Therefore, we should analyze the intension of an region, which consists of regional distribution, peculiarity and distinction of economic development.

At the same time, an integrated regional analysis should include regional potential analysis and regional development direction forecast. However, limited by the data at
present, it is impossible to make an accurate forecast. This is one deficiency of this essay.

Region is one of the basic concepts that are frequently used both in geography and economics. As a set of cities having the same traits, region becomes the joint of natural and cultural factors under research. The proper planning and development of region become the very issue that every country confronts. Therefore, it is our responsibility to harmonize man-land relationship and carry out continuous development. Only by mastery of principles and traits can we ensure the accomplishment of urbanization and regionalization.

Author: Boyuan Zhao, Hao Luo
References

1. “Data Mining, Technology of Customer Relationship Management”, Berri, Yuan Wei, etc, CFEPH, 2004

2. “SPSS, Statistical Analysis Methods and Application”, Xue Wei, PHEI, 2004
