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Abstract

Background: Variance component (VC) models have been widely used in di¤erent areas,
especially in genetics. To �nd statistical evidence in Quantitative Trait Loci (QTL) analysis,
variance component estimation for random e¤ects is a powerful tool. However, approaches
are desired to estimate models with various distribution families. We consider hierarchical
generalized linear model (HGLM) for variance component estimation.

Analysis: We implement an HGLM algorithm for normal linear mixed models. The algorithm
is available for VC models with only one random e¤ect term. We apply this algorithm to a
simple example and a QTL analysis problem. Developing the algorithm, we upgrade it to be
available for two or even more random e¤ect terms and apply it to the QTL analysis. The
results from HGLM algorithm is good but when comparing to Fisher scoring algorithm, we �nd
that the convergence of HGLM algorithm is much slower. Thus, proposals for accelerating
convergence are discussed and included in the algorithm as complement.

Conclusion: HGLM approach is a good method in estimating variance components, since
the algorithm is able to be easily extended to non-normal cases, and the gamma GLM �tting
in the algorithm overcomes the problem of the sign of variance components. Convergence
e¢ ciency is a problem for HGLM algorithm, and some prediction methods may be considered.

Thesis Supervisor: Lars Rönnegård
Title: Lecturer, Ph.D.
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Notation List

b(�) Cumulant function in generalized linear models.

E (y) / E (y) Expectation vector of y / Expectation of y .

g(�) Link function in generalized linear models.

H(�, v; y, v) H-likelihood of (�, v) based on data (y, v) (omitted if obvious).

h(�, v; y, v) H-loglihood (h-log-likelihood) of (�, v) based on data (y, v).

I (�) Fisher information.

I (b�) Observed Fisher information.

I(�) Expected Fisher information.

J (�) Observed information matrix at �.

L(�; y) Likelihood function of � based on data y.

`(�; y) Loglihood (log-likelihood) function of � based on data y.

N,�, � � � Normal English or Greek letters refer to numbers, variables or parameters.

pv(`) Adjusted pro�le of loglihood ` with nuisance parameter v eliminated.

S� Likelihood ratio test (LRT) statistic with form �2 (`0 � `1).
S(�) Score function of parameter vector �.

Var(y) / Var(y) Covariance matrix of y / Variance of y .

V (�) Variance function in generalized linear models.

X,�, � � � Capital English or Greek letters in bold refer to matrices.

y,�, � � � Lowercase English or Greek letters in bold refer to vectors.
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1 Introduction

Variance component (VC) estimation is widely used in
statistical modeling, where di¤erent types of e¤ects

can be involved in the model. Using likelihood theory,
such kind of models are able to be estimated using max-
imum likelihood (ML). Harville, D.A. (1977) introduced
the application of the ML method in variance component
estimation of mixed linear models. From the research re-
lated to this work, we already have some iterative algo-
rithms for estimating the �xed and random e¤ects as well
as the variance components.
In genetic analysis, variance component estimation is a

useful technique. One aspect that Robinson G.K. (1991)
illustrated is the theory of the best linear unbiased predic-
tor (BLUP) for the estimation of random e¤ects, which is
feasible in estimating genetic merits. Iterative algorithms
which are used for estimating variance components are
available in some genetic problems, for instance, restricted
maximum likelihood (REML) estimation with Fisher Scor-
ing approach that we shall mention later in this article.
Most variance component estimation algorithms are di¢ -
cult to extend to various distribution families for random
e¤ects. For example, binary data are often analyzed in
genetics, and in other statistical applications, exponen-
tial family is so important that many essential distribu-
tions belong to such a family. Lee, Y. and Nelder, J.A.
(1996) proposed the hierarchical generalized linear mod-
els (HGLMs) which emancipate the distribution of ran-
dom e¤ects in the models. HGLM is an epoch in the
estimation of variance components, which is rather po-
tential in statistical applications. In genetics, squaring up
to �t various distribution of random e¤ects, we have the
desirability of applying HGLMs. If HGLMs are able to be
controlled and conveniently used, more achievements will
be obtained in di¤erent occasions.
The aim of the article is to implement and evaluate

an HGLM algorithm for mixed linear models which we
apply in QTL analysis. In Section 2, we simply intro-
duce the concept of variance component (VC) models,
and in Section 3, some background knowledge of hierar-
chical GLMs is stated. The algorithm for HGLMs is sum-
marized and modi�ed in Section 4 in accordance with Lee,
Y., Nelder, J.A. and Pawitan, Y. (2006). An application
of the method in QTL analysis is illustrated in Section
5. In Section 6, we evaluate HGLMs by comparing with
Fisher Scoring method. And for the purpose of widely ap-
plication in genetics, an additional part will upgrade the
original algorithm by Lee, Y., Nelder, J.A. and Pawitan,
Y. (2006) in Section 7, where more random e¤ects can
be involved. We also discuss about the convergence and
extension of iteration algorithm.

2 VC Models

In general or generalized linear models, we usually havea parameter vector � which refers to some �xed e¤ects.
All the random factors are included in the error term or
the response vector. However, these models may not be
exactly what we desire, since sometimes e¤ects can be
interpreted as random and should not be simply included
in the error term. Starting with the general form, we have
a model as

y = X� + Zv + e (2.1)

where y is a response vector containing N elements,
X(N�p) and Z(N�q) are model matrices, � is the �xed-
e¤ect vector, v is the random-e¤ect vector with multivari-
ate normal distribution MVN(0,D), and e � MVN(0,�)
which is independent of v. This is the so-called random
e¤ect model. Let � be a parameter vector containing all
the parameters in � and D, then we can express that � is
formed by the variance components. Thus, the variance
component (VC) model, the linear model with random ef-
fects and the mixed linear model are the same thing. If we
have � =�2IN and D =�2v Iq, where In denotes the n� n
identity matrix, � should be a vector as � =(�2,�2v ).
In our analysis, we are interested in estimating the

variance-component vector � . This could be done by ap-
plying some likelihood methods in normal linear mixed
models, where the REML adjustment (developed by Pat-
terson, H.D. and Thompson, R., 1971) would be useful.
However, classical methods often give very slow proce-
dure. The algorithm introduced by Lee, Y., Nelder, J.A.
and Pawitan, Y. (2006) will be implemented and discussed
later via the hierarchical generalized linear models, and we
are going to apply it to some data sets.

3 Hierarchical GLMs

Hierarchical generalized linear models (HGLMs), an ex-
tension of generalized linear mixed models (GLMMs),

was �rst presented by Lee, Y. and Nelder, J.A. (1996).
HGLM is a reasonable tool for estimating VC models. A
general case of the VC model was introduced in the previ-
ous section, now we start from the de�nition of HGLMs.

3.1 HGLMs

The original de�nition of HGLMs by Lee, Y. and Nelder,
J.A. (1996) can be summarized as:

� Conditional distribution of the response vector y on
random e¤ect u follows a GLM family and

E (yju) = � (3.1)
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Var(yju) = �V (�) (3.2)

where � is the dispersion parameter and V (�) is the
variance function of GLMs. The kernel of loglihood
is given by X�

y� � b(�)
�

�
(3.3)

where � is a function of � and known as the canon-
ical parameter. The linear predictor have the form
of

� = g(�) = X� + Zv (3.4)

where v, the random-e¤ect vector, is a monotone
function of u, and � is the �xed-e¤ect vector.

� The distribution of random vector u is conjugate to
a GLM family with parameter �.

HGLMs are �exible in the sense that the distribution
of random-e¤ect vector can be speci�ed as needed. The
original de�nition by Lee, Y. and Nelder, J.A. (1996)
emphasized conjugacy although sometimes we may not
need to constrain us to such a situation. The concept
of conjugate distribution as de�ned by Cox, D.R. and
Hinkley, D.V. (1974), leads to the conjugate HGLMs. If
the random-e¤ect vector follows a conjugate distribution
to the GLM family in the model, we will have a conju-
gate HGLM. The reason why noting this is that for weak
canonical scale (see De�nition 3.2) of v, conjugacy has
a nice characteristic. The scale of random e¤ects is not
important in conjugate distributions, since they will be
integrated out. We put some combinations of the distri-
butions in HGLMs as follows, which are speci�ed in Lee,
Y., Nelder, J.A. and Pawitan, Y. (2006). In this article,
the conjugate normal-normal HGLM will be implemented
and applied.

Table 3.1 Examples of HGLMs from Lee, Y., Nelder, J.A. and Pawitan, Y. (2006)

yju distribution g(�)y u distribution v(u) Model
Normal id Normal id Conjugate HGLM (Linear mixed model)
Binomial logit Beta logit Conjugate HGLM (beta-binomial model)
Binomial logit Normal id Binomial GLMM
Binomial comp Gamma log HGLM
Gamma recip Inverse-gamma recip Conjugate HGLM
Gamma log Inverse-gamma recip Conjugate HGLM (non-canonical link)
Gamma log Gamma log HGLM
Poisson log Normal id Poisson GLMM
Poisson log Gamma log Conjugate HGLM

y id=identity, recip=reciprocal, comp=complementary-log-log

3.2 Normal Linear Mixed Models

Conjugate normal-normal HGLM is the normal linear
mixed model as we usually know. According to the de�-
nition by Lee, Y. and Nelder, J.A. (1996), if in conjugate
distribution of random vector u, we have

E (u) =  M (3.5)

Var(u) = �VM( M) (3.6)

and the kernel of loglihood of random e¤ects has the formX�
 M�M � b(�M)

�

�
(3.7)

the model can be speci�ed with terms in Table 3.2 below.

Table 3.2 Normal response and conjugate normal random e¤ects

Distribution of Response yjv V (�) � =�(�) b(�)

Normal 1 � �2

2

Distribution of random e¤ects u VM( M) �M = �M( M) bM(�M)  M �

Normal 1  M
�2M
2 0 �
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Estimation of the mean parameters and variance com-
ponents can be achieved through di¤erent kinds of meth-
ods, in which, as mentioned in Section 2, classical ones
such as ordinary REML adjustment are available. How-
ever, we are interested in another method which may step
up the estimation procedure. To approach such a method,
we introduce the h-likelihood in the next subsection.

3.3 Extended Likelihood and H-likelihood

For details of the concepts introduced below see Lee,
Y., Nelder, J.A. and Pawitan, Y. (2006) or Pawitan, Y.
(2001). Generally speaking, there are two kinds of likeli-
hood. One is the classical Fisher likelihood, which typi-
cally has the form

L(�; y) = f�(y) (3.8)

where the right-hand side is used for generating data ac-
cording to the distribution of y with some �xed �, and the
left-hand side is applied to make inference about � based
on the sample y. This is the likelihood principle we usually
use, however what we only see is its advantage on esti-
mating or inferring �xed parameters. Considering the VC
model in Equation (2.1), if we are interested in estimat-
ing both parameters � and v, simply maximizing Fisher
likelihood gives no information about the random-e¤ect
parameter v. Thus, we need to generate the likelihood
principle, which can deal with not only �xed parameter �,
observed variable y, but the unobservable random quan-
tity v as well. For the generating data part, we have

f�(v)f�(yjv) = f�(y, v) (3.9)

where a �xed v can be �rst generated from f�(v) and then
y will be generated from the conditional density f�(yjv).
For parameter inference, the following extended likelihood
is de�ned.

De�nition 3.1 The extended likelihood for �xed parame-
ter � and random quantity v is

L(�, v; y, v) = L(�; y)L(�, v; vjy) (3.10)

where L(�; y) is the marginal likelihood and L(�, v; vjy) �
f�(vjy) is the conditional likelihood.

In the right-hand side of Equation (3.10), � can be
�rst inferred from the marginal likelihood L(�; y), then
with � known, v can be inferred from the conditional like-
lihood L(�, v; vjy). Such a de�nition was already used by
Butler, R.W. (1986), Berger, J.O. and Wolpert, R. (1984)
and Bjørnstad, J.F. (1996), and it is suitable for working
with models like VC models we mentioned in Section 2.

Detailed inference procedure for both �xed and random
parameters can be found in Lee, Y., Nelder, J.A. and
Pawitan, Y. (2006), and computationally such an infer-
ence making from extended likelihood is much less com-
plicated and faster than some popular simulation meth-
ods such as the EM (expectation-maximization) algorithm
(Dempster, A.P., Laird, N.M. and Rubin, D.B., 1977),
Monte-Carlo EM (Vaida, F. and Meng, X.L., 2004) and
Gibbs sampling (Gelfand, A.E. and Smith, A.F.M., 1990).
However, to make the inference for HGLMs more straight-
forward, a special extended likelihood approach should be
introduced. The estimation from the extended likelihood
may be wrong when the scale of v varies. But some scales
always lead to the correct estimation. Assume there exists
a scale v such that we have the following likelihood ratio

L(�1,bv�1 ; y, v)
L(�2,bv�2 ; y, v) = L(�1; y)

L(�2; y)
, L(�1,bv�1 ; vjy)
L(�2,bv�2 ; vjy) = 1

(3.11)
where �1 and �2 are two arbitrary values of �xed parame-
ter �, and bv�k (k = 1, 2) is the MLE of v for � at �k . In
such a situation, there�s no information about � in nei-
ther bv� nor conditional pro�le likelihood L(�1,bv�1 ; vjy),
which satis�es the classical likelihood principle. Then we
call the scale of v a canonical scale, and we have the
following de�nition.

De�nition 3.2 L(�, v; y, v) is called h-likelihood if the
parameter v is canonical.

The h-likelihood is denoted by H(�, v) and h-loglihood
h(�, v). The h-likelihood has a nice feature for further
inference in HGLMs. As we desire, the MLE of � from
H(�, v) will be exactly the same as that from the marginal
likelihood L(�; y).
Now come back to the normal-normal HGLMs we

show interest in the previous subsections. According to
De�nition 3.1 and Equation (3.9), we have the extended
loglihood function as

`e(�, � , v) = log f (y, v) (3.12)

= log f (yjv) + log f (v)

= �1
2
log j2��j

�1
2
(y � X� � Zv)0��1 (y � X� � Zv)

�1
2
log j2�Dj � 1

2
v0D�1v

Given the �xed parameters and maximizing the extended
loglihood, we have

bv = �Z0��1Z+D�1��1 Z0��1 (y � X�) (3.13)
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and the observed Fisher information

I (bv) = � @2

@v@v0
`e(�, � , v)

����
v=bv = Z

0��1Z+D�1

(3.14)
Finding a canonical scale is often di¢ cult but there are
some ways to check whether or not a scale is canonical.
Since only � is contained in the observed Fisher infor-
mation of v, v can be canonical for � and actually it is.
Therefore, inference about � and v can be made jointly
because the extended likelihood we have is actually an
h-likelihood. Detailed theoretical work for estimating �
and v can be found in Lee, Y., Nelder, J.A. and Pawitan,
Y. (2006). What�s more, the marginal loglihood we need
for estimating � can be derived as an adjusted pro�le
likelihood as

`(�, � ) = pv(hj�, � ) = h(�, � ,bv�,� )� 1
2
log

���� I (bv)2�
����

(3.15)
In terms of h-likelihood, the pro�le likelihood of variance
components is

`p(� ) = `(b�� , � ) = h(b�� , � ,bv� )� 12 log
���� I (bv)2�

���� (3.16)
If REML adjustment for the estimation of �xed e¤ects �
is included, we have

p�,v (`j� ) = `
�b�� , ��� 12 log

����X0V�1X2�

���� (3.17)

which can be seen further in Fitting Algorithm.
We intend to carry out an algorithm from the h-

likelihood approach for the normal case HGLMs. Lee,
Y., Nelder, J.A. and Pawitan, Y. (2006) say about this
approach that these results about random e¤ects are only
approximately true (Laplace�s approximation) for most
non-normal cases.

4 Fitting Algorithm

The h-likelihood approach in Subsection 3.3 actually
suggests a �tting algorithm. In this section, the �t-

ting algorithm will be �rst summarized for an augmented
linear model, and then we shall implement it in a Ri func-
tion, which can be �exibly applied to data sets of interest.

4.1 Algorithm Summary

The �tting algorithm (summarized from Lee, Nelder and
Pawitan, 2006) that we shall implement can be made out

from the h-likelihood approach in Subsection 3.3. The
VC model (2.1) can be written as

ya = T� + ea (4.1)

where ea � MVN(0,�a), and

ya =

�
y
 M

�
, T =

�
X Z
0 I

�
, � =

�
�
v

�
,

ea =

�
e
eM

�
, �a =

�
� 0
0 D

�
.

Here, � =�2IN , D =�2v Iq and � =(�
2,�2v ). The sub-

scriptM of  M is to indicate the random e¤ects appear in
the linear predictor for the mean. Therefore  M is set to
be 0 as response for estimating the variance component in
matrix D. The following algorithm is constructed through
IWLS for the augmented model to estimate (�, � , v).
Mixed models equations (MME) and REML estimation
are combined in the algorithm procedure.

Algorithm 4.1 IWLS for the augmented linear mixed
model (modi�ed from Lee, Nelder and Pawitan, 2006):

� Set a starting value of variance-component parame-
ter � .

� Given the current estimate of � , solve the aug-
mented mixed models equation T0��1a Tb� =
T0��1a ya (derived from Equation (4.1)) to get a
new estimate of �:b� = �T0��1a T��1T0��1a ya (4.2)

� Given the current estimate of �, calculate the
deviance components corresponding to ea as the
squared residuals:

di = (yi � Xi b� � Zibv)2 (4.3)

dMi = ( M � bvi )2 = bv2i (4.4)

where Xi and Zi refer to the i�th row vector in X
and Z.

� Calculate the hat-matrix:

Ha= T
�
T0��1a T

��1
T0��1a (4.5)

and set the leverages:�
q
qM

�
=

�
(h11, � � � , hNN)0

(hN+1,N+1, � � � , hN+q,N+q)0
�
(4.6)

where hii refers to the i�th diagonal element of Ha.
iR codes in detail are presented in Appendix.
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� Let
d�i =

di
1� qi

(4.7)

d�Mi =
dMi

1� qMi
(4.8)

$ =
1� q
2

(4.9)

$M =
1� qM
2

(4.10)

and model a GLM with response d�, gamma fam-
ily ii, identity link, intercept only linear predictor and
prior weight $ to get an updated estimate for �2;
model a GLM with response d�M , gamma family,
identity link, intercept only linear predictor and prior
weight$M to get an updated estimate for �2v . Note
that E (d�i ) = �2, Var(d�i ) = 2�2=(1 � qi ) and
E (d�Mi ) = �2v , Var(d

�
Mi ) = 2�

2
v=(1� qMi ).

� Iterate from the second step until convergence. At
convergence, calculate standard errors of b� andbv � v from H�1, where

H = T0��1a T (4.11)

After checking singularity, calculate the standard er-
rors of b� from the negative inverse of the Hessianiii
of

p�,v (hj� ) = `(b�� , � )� 12 log
����X0V�1X2�

���� (4.12)

where V = ZDZ0 +� and

` (�, � ) = �1
2
log j2�Vj�1

2
(y � X�)0V�1 (y � X�)

(4.13)

� Calculate the likelihood ratio test (LRT) statistic of
test

H0 : �2v = 0

H1 : �2v > 0

in accordance with the pro�le likelihood in (4.12),
we have

S� = �2 (`0 � p�,v (hjb� )) (4.14)

where `0 is the likelihood under the null hypothesis.

The above algorithm is an extension of ordinary REML
methods. In the following subsection, this algorithm will
be implemented in R and we shall see how it works for a
simple data set.

4.2 Programming Implementation

Assume that we have the one-way random e¤ects model
as

yij = �+ vi + eij (4.15)

for i = 1, 2, � � � , q and j = 1, 2, � � � , n. Writing it with
the form of VC models in Equation (2.1), if the total data
size is N = qn, we have

X = 1N

� = �

Z =

�
zij =

�
1, if yij comes from the i�th group
0, otherwise

�
N�q

v = (v1, v2, � � � , vq)0

� = �2IN

D = �2v Iq

where 1N is the column vector of N ones and the variance
component parameter is � =(�2,�2v ).
This model will be carried out using our algorithm

on the data in Table 4.1. This data set (from Fears,
T.R., Benichou, J. and Gail, M.H., 1996) shows the es-
trone measurement results from �ve menopausal women,
in which 16 measurements were taken from each person.
The application on these data tries to detect whether
the variability among the data comes mainly from the
di¤erence among persons, i.e. whether the person ef-
fects are signi�cant large. For this purpose, naturally,
we model the persons as random e¤ects and apply the
model in (4.15). Notice that after the transformation of
yij = 10 log10(estrone measurements), q = 5 and n = 16,
the model will be available for the data.

Table 4.1 Estrone measurements from �ve menopausal
women from Fears et al. (1996)

i = 1 2 3 4 5 i = 1 2 3 4 5
23 25 38 14 46 22 26 35 17 32
23 33 38 16 36 22 30 40 18 31
22 27 41 15 30 23 30 41 20 30
20 27 38 19 29 23 29 37 18 32
25 30 38 20 36 27 29 28 12 25
22 28 32 22 31 19 37 36 17 29
27 24 38 16 30 23 24 30 15 31
25 22 42 19 32 18 28 37 13 32

iiWe can obtain REML estimators from �tting gamma-GLMs.
iiiThe Hessian matrix of a function at a certain value of an argument can be calculated using the Richardson approximation. Package

{numDeriv} in R can do this approximation (for help see http://rss.acs.unt.edu/Rdoc/library/numDeriv/html/hessian.html).
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The summary of estimation results from R is shown
in Table 4.2 and Figure 4.1, in which estimates of the
four parameters are obtained and the iterations converge
in just �ve times. The convergence condition is set up to

be max j� k � � k�1j 6 1� 10�5 (k is the current number
of iteration). In fact as shown in Figure 4.1, estimates of
variance components get quite close to the �nal conver-
gence values after just two iterations.

Table 4.2 Estimation results for estrone measurements datab� bv = (v1, v2, v3, v4, v5)0
Estimates 14.1751 (�.6229, .2691, 1.4431,�1.9196, .8303)0b�2 b�2v
Estimates .3254 1.7494

Total Iteration Number 5
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Figure 4.1 Estimation and iteration for estrone measurements data.
In the �rst sub�gure, starting values are set to be 1.

Blue dashed line and red single line refer to b�2 and b�2v , respectively.
Actually, y = 14.1751 which is exactly the same as b�.

We also have the sample means y i�s as

13.5450 14.4473 15.6350 12.2331 15.0151

and the variance of these �ve sample means is 1.7698.
And that according to our estimation results, the esti-
mates of the individual means b�i�s should be

13.5522 14.4442 15.6182 12.2555 15.0054
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with the estimate b�2v = 1.7494. The estimates of indi-
vidual means are quite close to the sample means and
the estimate of the variance component �2v is close to the

variance of the �ve sample means as well. The original
response data set y and the estimated by are both shown
in Figure 4.2.
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Figure 4.2 Original response data set and the estimates.
The red solid points refer to the original data in y, and the blue line represents the estimates.

These results show a good estimation of our algo-
rithm, and the ratio of b�2v=(b�2 + b�2v ) = .8432 is a large
value. From the LRT statistic in the algorithm, we have
the statistic value of S� = 326.17 by substituting `0 with
p�,v (hj� 0), where b� 0 = (b�2, 0). Assuming the sample
size 80 is large enough, we can approximately �nd the
distribution of S�. As shown by Self, S.G. and Liang,
K.Y. (1987), S� should be 50% : 50% mixture distrib-
uted between 0 and a �2 distribution. The di¤erence in
dimensionality of b� 0 and b� is 1 which should be the de-
grees of freedom of the �2 distribution. Denoting the mix-

ture distribution as M, we have S� = 326.17 � M.95 =
�2(.95�.50)=.50 (1) = �2.90 (1) = 2.71, which indicates most
of the variability among the measurement data comes
from the person e¤ects, say, di¤erent menopausal women
may have di¤erent content of estrone. To check the as-
sumptions of v and e separately, the two sets of residualsbvi and bei = yi � Xi b� � Zibv are considered. The �tting
procedure gives the standardization of bvi= (1� qMi ) andbei= (1� qi ). Figure 4.3 gives some graphs about standardbe residualsiv and the corresponding deviance residuals.

ivTo avoid some unwanted trend, Lee, Y. and Nelder, J.A. (2001) recommend a plot of bei against Xi b�.
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Figure 4.3 Residual plots for estrone measurements data

The �rst row of sub�gures in Figure 4.3 indicate the
symmetry from assumptions and approximately normality
of the residual set bei . Referring to the deviance residu-
als, as our de�nition of deviance, they should be positive
and skewed to the right. In fact, in our REML algorithm,
gamma GLM is applied to �t the deviance.

5 Genetic Data Experiment

In this section, the algorithm we have implemented previ-ously will be applied to some data in genetics. We shall
study how this algorithm works for larger design matrices
and how the estimates converge.

5.1 Background

Nowadays in genetics, it is necessary to understand the
complicated traits which are controlled by lots of genes

and other factors. And there is a useful statistical tool
dealing with such a problem - Quantitative Trait Loci
(QTL) mapping. The core of this method is using ge-
netic markers to trace the inheritance procedure of alleles
through a pedigree. Then relating the phenotypes with
di¤erent alleles, the allelic e¤ects are estimated from the
gene �ow through the pedigree. Giving the statistical re-
sults and evidence, the position on the chromosome where
a QTL is most likely located can be inferred.

In QTL analysis, the genetic e¤ects are assumed ran-
dom, since the founders of the population are assumed to
have e¤ective QTL alleles drawn from some distribution
of alleles e¤ects in the entire population, and the inher-
itance process of the alleles transmitting from ancestor
to descendent is random. The model is so-called in�nite
alleles model when the random e¤ects are assumed to be
sampled from a multivariate normal distribution with an
in�nite number of alleles. It has been shown by simulation

vA locus at which there are two possible variations of a given DNA sequence that are detectable in the human population.
(www.nature.com/nrg/journal/v6/n10/glossary/nrg1686_glossary.html)
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that this model can give unbiased estimates also when the
QTL is biallelicv.
A between-individual covariance structure has to be

speci�ed if we want to estimate the variance component
of the QTL e¤ects. Using some methods to estimate
from marker information, we will obtain a matrix called
the identity-by-descent (IBD) matrix. Rönnegård, L. and
Carlborg, Ö. (2007) described about this background in
detail. Then we have the data with the form of IBD matri-
ces, other �xed and random e¤ects design matrices and
the trait vector as response. We will model these data
with VC models in the next subsection.

5.2 Data Modeling

The data we will model in this subsection was also ana-
lyzed with Henderson�s method 3 by Rönnegård, L., Al-
Sarraj, R. and von Rosen, D. (2007). We have the re-
sponse vector y which include phenotypes of 190 obser-
vations of F2vi pigs. What we are interested in is the
chromosomal position of the halothanevii gene a¤ecting
meat quality. The design matrix X of �xed e¤ects con-
tains 6 columns, where column 1 indicates the gender,
columns 2 to 5 indicate the batch the observations come
from and the last column indicates the body weight in

grams. The design matrix Zf which include family e¤ects
in 26 columns. What�s more, we are supposed to have
the design matrix Z of QTL e¤ects. It is decomposable
from the IBD matrix �. Observing that the distribution
of y is generally normalviii, we have

y = X� + Zf v + Za+ e (5.1)

where � is the �xed-e¤ect vector, v is the family random-
e¤ect vector with covariance matrix D =�2v I26, a is
the QTL random-e¤ect vector with covariance matrix
Da=�2aI190, and the error term e has the covariance ma-
trix � =�2I190. However, the algorithm implemented in
the previous section is available for the VC model con-
taining only one random-e¤ect term. Thus, we will �rst
stepwise analyze the random e¤ects.
Considering only the family e¤ects and the �xed ef-

fects, we have the model

y = X� + Zf v + e (5.2)

which can be estimated using the previous �tting algo-
rithm. After estimating this model, we get the estimatesb�2v = .97 and b�2 = 17.63. The estimates and process of
iteration is shown in Figure 5.1, and the residual plots are
given in Figure 5.2.
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Figure 5.1 Estimation and iteration for the pigs�phenotypes data including �xed e¤ects and family e¤ects

viUsually, F0 and F1 are used to denote grandparents and parents, respectively. F2 represents o¤springs.
viiA non�ammable inhalation anesthetic that produces general anesthesia; used along with analgesics and muscle relaxants for many

types of surgical procedures (wordnet.princeton.edu/perl/webwn)
viiiHistogram of y is given in Appendix.
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Figure 5.2 Residual plots for pigs�phenotypes data
including �xed e¤ects and family e¤ects

In Figure 5.1, the second and third rows of sub�gures
give the iteration procedures and estimates of � and v.
Now focus on the sub�gures in the �rst row. Red solid
points in the second sub�gure give the convergence of
the total estimated variance in the response vector, i.e.b�2v + b�2; the green vertical bars at the bottom show the
quantity of b�2v out of the total estimated variance. This
indicates that the variance component from the family ef-

fects is quite small, therefore ignoring such e¤ects in the
model (5.1) should not a¤ect our estimation too much.
Furthermore, we can compare the estimated yi�s with the
original ones in Figure 5.3, where the estimated line does
not �t the data well, and the variance included in the
line mainly comes from the term e instead of the random
family e¤ects term v.
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Figure 5.3 Data in response vector (solid points) and their estimates (solid line) for pigs�phenotypes data
including �xed e¤ects and family e¤ects

Hence we may include only one random-e¤ect term of
the QTL e¤ects instead of the family e¤ects, which gives
the model

y = X� + Za+ e (5.3)

Similarly, we should be able to estimate this model by
using Algorithm 4.1 again, and the di¤erence is that now
we have more elements - 190 di¤erent genes - in the
random-e¤ect vector a. Before estimating model in (5.3),
we should deal with the problem of decomposing the de-
sign matrix Z from the IBD matrix �. The IBD matrix
describes the covariance structure between each pair of
individuals, and we have the relationship

� = ZZ0 (5.4)

Thus, decomposing matrix Z requires some methods �nd-
ing square roots of a square matrix, and in our analysis,
the singular value decomposition (SVD) method is ap-

plied. The following algorithm gives the process how this
method is implemented.

Algorithm 5.1 Decomposing design matrix Z from IBD
matrix � by SVD method:

� Decompose � by SVD method ix to obtain

� = UDV0 (5.5)

where U and V are orthogonal, and D is a diagonal
matrix with the singular values dii , i = 1, 2, � � � , k.

� Denote
p
D � diag

�p
d11,

p
d22, � � � ,

p
dkk
�

(5.6)

Calculate
Z = U

p
DV

0
(5.7)

ixFunction {svd} in R can do this decomposition. (For help see http://stat.ethz.ch/R-manual/R-patched/library/base/html/svd.html)
xThe 35 di¤erent positions represented by length in centimeters are: 0cM, 5cM, � � � , 170cM. In genetics, a centimorgan (abbreviated

cM) or map unit (m.u.) is a unit of recombinant frequency for measuring genetic linkage. It is often used to imply distance along a
chromosome. For human, 1 centimorgan on average represents a distance of about 7.5� 105 base pairs. (See Scott, M.P. et al., 2004)
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Selecting the F2 individuals which have been pheno-
typed, we obtain the 35 IBD matrices at 35 di¤erent po-
sitionsx on pig�s chromosome 6. Combining both algo-
rithms 4.1 and 5.1, we can estimate the model in (5.3).
35 times of applying the algorithms give 35 pairs of esti-
mates (b�2, b�2a), which are the results we need for inference
in QTL analysis. To show a plain estimation procedure,
we still give a group of �gures as before, taking the case
of IBD matrix at 80cM for instance. The second sub�gure
in the �rst row of Figure 5.4 gives the proportion of b�2a

out of the total variance b�2 + b�2a, where we can �nd big
di¤erence from that in Figure 5.1. Here the QTL e¤ects
instead of the family e¤ects in the model, we obtain a
larger variance component from the random e¤ects. This
is also con�rmed in Figure 5.6. The variation of the es-
timated line is larger than the line in Figure 5.3. Since
we have indicated that the variation of the line in Figure
5.3 is mainly due to �2, and here we have more variation,
the di¤erence of variation should come from the variance
component �2a.
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Figure 5.4 Estimation and iteration for the pigs�phenotypes data
including �xed e¤ects and QTL e¤ects at 80cM on pig chromosome 6
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Figure 5.5 Residual plots for pigs�phenotypes data
including �xed e¤ects and QTL e¤ects at 80cM on pig chromosome 6
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Figure 5.6 Data in response vector (solid points) and their estimates (solid line) for pigs�phenotypes data
including �xed e¤ects and QTL e¤ects at 80cM on pig chromosome 6.
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Estimation results of the 35 models are summarized in
Table 5.1 and Figure 5.8-5.9. A signi�cantly larger LRT
statistic value indicates a position that the gene most
likely locates at.

Table 5.1 Estimates of variance components for pigs�
phenotypes data including �xed e¤ects and QTL e¤ects

Position b�2 b�2a Position b�2 b�2a
0cM 16.20 3.95 90cM 14.19 6.26
5cM 17.05 2.53 95cM 15.27 4.87
10cM 17.98 .78 100cM 16.10 3.63
15cM 17.96 .83 105cM 15.47 4.35
20cM 18.02 .77 110cM 14.81 5.24
25cM 18.29 .36 115cM 15.44 4.11
30cM 18.55 .00 120cM 16.47 2.45
35cM 18.56 .00 125cM 16.11 2.36
40cM 18.56 .00 130cM 15.47 3.14
45cM 18.56 .00 135cM 14.90 4.32
50cM 18.56 .00 140cM 14.22 5.75
55cM 18.55 .00 145cM 13.81 6.64
60cM 16.58 3.35 150cM 13.43 7.56
65cM 14.83 6.74 155cM 13.46 7.75
70cM 14.14 6.51 160cM 13.99 7.05
75cM 14.05 5.81 165cM 14.80 5.85
80cM 13.92 5.07 170cM 15.57 4.72
85cM 14.40 5.21
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Figure 5.7 Estimates of QTL variance component �2a for
pigs�phenotypes data along pig chromosome 6 (model

including �xed e¤ects and QTL e¤ects)
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Figure 5.8 Values of likelihood ratio statistics for pigs�
phenotypes data along pig chromosome 6 (model

including �xed e¤ects and QTL e¤ects). The halothane
gene a¤ecting meat quality is located at 80cM.

Notice that in our experiment of pigs� phenotypes
data, for LRT, likelihood under the null hypothesis is set
as the same all over the chromosome. And this likelihood
is determined from the model in (5.2), where none of the
QTL e¤ects are involved. The same likelihood under the
null hypothesis is applied in Section 7 as well.
We can make a reasonable inference from Figure 5.8.

The likelihood ratio curve peaks at the position of 80cM,
which gives that the most likely position of the gene is
somewhere around here. In fact, the halothane gene re-
ally locate here, therefore our QTL analysis gives a good
evidence. In Discussion, we will mention the judgement
about signi�cance of the gene position.

6 Algorithm Comparison

In this subsection we compare the HGLM method to
Fisher Scoring (FS) method. We are interested in

two aspects. One is the statistical characteristic of this
method comparing to others, and the other is the e¢ -
ciency of convergence for the algorithm.

6.1 Fisher Scoring Method

We give a summary of the FS method. For more details,
see Davidson, A.C. (2003). Let Y1,Y2, � � � ,Yn be in-
dependently and identically distributed random variables
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whose p.d.f. f (Y ;�) is twice di¤erentiable. What we de-
sire to �nd is the maximum likelihood estimator (MLE) b�
of �. We have the score function

S(�) =
@

@�
`(�; y) (6.1)

=
@

@�
log L(�;Y ) =

1

L(�; y)

@

@�
L(�;Y )

Setting a starting point �0 for the algorithm, we can de-
rive the Taylor expansion of the score function as

S(�) � S(�0)� J (�0)(� � �0) (6.2)

where

J (�0) = �
nX
i=1

rr0
��
�=�0

log f (Yi ;�) (6.3)

is the observed information matrix at �0. Then setting
� =b� and S(b�) = 0, we can deriveb� = �0 + J�1(�0)S(�0) (6.4)

Therefore under some conditions, it can be shown that
the algorithm

�k+1 = �k + J�1(�k)S(�k) (6.5)

can bring us the convergence �k ! b�. Replacing J (�) by
the expected �sher information I(�), we have the Fisher
Scoring algorithm as

�k+1 = �k + I�1(�k)S(�k) (6.6)

It is applied to linear models for maximum likelihood es-
timation.

6.2 Comparison on Algorithm

For the characteristics of the FS algorithm and the HGLM
algorithm, we summarize some aspects in the table below,
and these show the important advantages of HGLM.

Table 6.1 Advantages of HGLM compared to FS algorithm

Fisher Scoring Hierarchical GLM
Estimation of Force back to a tiny positive " No problem with the sign

Variance Components if convergence at negative region since gamma-GLM is applied
Flexibility in Di¢ cult to apply to Changing the algorithm somewhat

Distribution Family non-normal random e¤ects can �t the whole exponential family

The �exibility in distribution of random e¤ects is the
essential advantage of HGLM. Although not implemented
in this article, it is convenient to extend our algorithm
to other distributions in the exponential family. For in-
stance, VC models is common in QTL analysis and binary
data are usually obtained, hence developing REML algo-
rithm for other distribution will then be quite important.
Fortunately, hierarchical GLM is �exible for dealing with
di¤erent distributions. In our study, disadvantages also
exist for HGLM algorithm, which is discussed in the next
subsection.

6.3 Comparison on E¢ ciency

The REML algorithm with Fisher Scoring method is im-
plemented as well in Appendix. Setting the convergence
criterion and starting value the samexi for both the FS
and the HGLM algorithms, �rst we estimate the Fears et
al. (1996) data in Section 4 with both methods. The
di¤erence in convergence is clearly shown in Figure 6.1.

1 2 3 4 5 6

1.
0

1.
2

1.
4

1.
6

Iteration Number

Figure 6.1 Convergence procedure of �2v for estrone
measurements data. Red solid points and blue circles
refer to HGLM and FS algorithms, respectively.

The convergence of �2 is similar with �2v . According
to Figure 6.1, in this example, HGLM takes 5 iterations
to get convergence, whereas FS method takes only 2. As
shown in the �gure, the estimator in HGLM algorithm
approaches to the destination value slower. To study this
di¤erence further, we do the comparison for model in (5.3)

xiHere we set the convergence rule as max j� k � � k�1j 6 1� 10�5 (k is the current number of iteration) and max(k) = 200. All the
starting values are set to be 1.
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with both methods for the IBD matrix at 80cM. The re-
sults are shown in Figure 6.2.

5 10 15 20

2
4

6
8

I teration Number

Figure 6.2 Convergence of �2a for pigs�phenotypes data
including �xed e¤ects and QTL e¤ects at 80cM on pig
chromosome 6. Red solid points and blue circles refer to

HGLM and FS algorithms, respectively.

In Figure 6.2, the FS algorithm takes only 5 iterations
but the HGLM algorithm takes even more than quadruple
of that. Therefore, we �nd that the e¢ ciency of conver-
gence for HGLM seems to be quite slow. We summarize
the disadvantages of HGLM algorithm in the following
table.

Table 6.2 Disadvantages of HGLM compared to FS
algorithm

Fisher Scoring Hierarchical GLM
Convergence E¢ cient Slow

However, for the slow convergence, there may be some
way out. The solid points in Figure 6.2 give us a curve
which looks smooth. The destination estimate here ap-
pears to be like a limit or an asymptote for the HGLM
iteration sequence. Since we �nd a trend that the curve
tend to keep a distance from the estimate we want, we
may �t such a convergence curve and use it for some
prediction. Therefore, when it takes too many iterations,
according to some �tting methods, we may predict the
estimate from just a few points at the beginning. Some
proposals are given in Discussion.

7 More Random E¤ects

Now we will try to estimate the model with the form
like (5.1). To include two random-e¤ect terms at

the same time in the VC models, we should upgrade Al-
gorithm 4.1. We still consider the following augmented
linear model, but we need to make some modi�cation.

ya = T� + ea (7.1)

where ea � MVN(0,�a), and

ya =

0@ y
 M1
 M2

1A , T =
0@ X Z1 Z2
0 I1 0
0 0 I2

1A , � =
0@ �
v1
v2

1A ,
ea =

0@ e
eM1
eM2

1A , �a =
0@ � 0 0
0 D1 0
0 0 D2

1A .
Here, � =�2IN , D1=�2v1 Iq1 , D2=�2v2 Iq2and
� =(�2,�2v1 ,�

2
v2).  M1 and  M2 are set to be 0 as

responses for estimating the variance component in ma-
trix D1 and D2. The following algorithm is constructed
through IWLS for the augmented model to estimate
(�, � , v1, v2).

Algorithm 7.1 Upgraded IWLS for the augmented linear
mixed model:

� Set a starting value of variance-component parame-
ter � .

� Given the current estimate of � , solve the aug-
mented mixed models equation T0��1a Tb� =
T0��1a ya to get a new estimate of �:b� = �T0��1a T��1T0��1a ya (7.2)

� Given the current estimate of �, calculate the
deviance components corresponding to ea as the
squared residuals:

di = (yi � Xi b� � Z1ibv1 � Z2ibv2)2 (7.3)

dM1i = ( M1 � bv1i )2 = bv21i (7.4)

dM2i = ( M2 � bv2i )2 = bv22i (7.5)

where Xi , Z1i and Z2i refer to the i�th row vector
in X, Z1 and Z2.

� Calculate the hat-matrix:
Ha= T

�
T0��1a T

��1
T0��1a (7.6)

and set the leverages:0@ q
qM1
qM2

1A = (7.7)

0@ (h11, � � � , hNN)0
(hN+1,N+1, � � � , hN+q1,N+q1)

0

(hN+q1+1,N+q1+1, � � � , hN+q1+q2,N+q1+q2)
0

1A
where hii refers to the i�th diagonal element of Ha.
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� Let
d�i =

di
1� qi

(7.8)

d�M1i =
dM1i

1� qM1i
(7.9)

d�M2i =
dM2i

1� qM2i
(7.10)

$ =
1� q
2

(7.11)

$M1 =
1� qM1
2

(7.12)

$M2 =
1� qM2
2

(7.13)

and model a GLM with response d�, gamma fam-
ily xii, identity link, intercept only linear predictor
and prior weight $ to get an updated estimate for
�2; model a GLM with response d�M1, gamma fam-
ily, identity link, intercept only linear predictor and
prior weight $M1 to get an updated estimate for
�2v1 ; model a GLM with response d�M2, gamma fam-
ily, identity link, intercept only linear predictor and
prior weight $M2 to get an updated estimate for
�2v2 . Note that E (d

�
i ) = �2, Var(d�i ) = 2�2=(1 �

qi ), E (d�M1i ) = �2v1 , Var(d
�
M1i ) = 2�2v1=(1 � qM1i )

and E (d�M2i ) = �2v2 , Var(d
�
M2i ) = 2�

2
v2=(1� qM2i ).

� Iterate from the second step until convergence. At
convergence, calculate standard errors of b� andbv � v from H�1, where

H = T0��1a T (7.14)

After checking singularity, calculate the standard er-
rors of b� from the negative inverse of the Hessianxiii
of

p�,v1,v2 (hj� ) = `(b�� , � )� 12 log
����X0V�1X2�

����
(7.15)

where V = Z1D1Z01 + Z2D2Z
0
2 +� and

` (�, � ) = �1
2
log j2�Vj�1

2
(y � X�)0V�1 (y � X�)

(7.16)

� Calculate the likelihood ratio test (LRT) statistic of
test, for instance,

H0 : �2v2 = 0

H1 : �2v2 > 0

in accordance with the pro�le likelihood in (7.15),
we have

S� = �2
�
`0 � p�,v1,v2 (hjb� )� (7.17)

where `0 is the likelihood under the null hypothesis.

The upgraded algorithm can be applied for estimating
the model in (5.1) and the results from the QTL analysis
is given in Table 7.1 and in Figures 7.1-7.2.

xiiWe can obtain REML estimators from �tting gamma GLMs.
xiiiThe Hessian matrix of a function at a certain value of an argument can be calculated using the Richardson approximation. Package

{numDeriv} in R can do this approximation (for help see http://rss.acs.unt.edu/Rdoc/library/numDeriv/html/hessian.html).
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Table 7.1 Estimates of variance components for pigs�
phenotypes data including �xed e¤ects, family e¤ects

and QTL e¤ects

Position b�2 b�2v b�2a
0cM 16.20 .02 3.92
5cM 16.95 .56 1.64
10cM 17.36 .87 .49
15cM 17.41 .90 .41
20cM 17.54 .94 .17
25cM 17.63 .97 .00
30cM 17.63 .97 .00
35cM 17.63 .97 .00
40cM 17.63 .97 .00
45cM 17.63 .97 .00
50cM 17.63 .97 .00
55cM 17.46 1.04 .17
60cM 15.60 1.39 3.04
65cM 14.52 1.06 5.29
70cM 14.01 .37 6.08
75cM 13.96 .18 5.66
80cM 13.80 .16 5.03
85cM 13.88 .71 4.95
90cM 13.65 .82 5.87
95cM 14.86 .58 4.70
100cM 15.91 .31 3.45
105cM 15.37 .24 4.14
110cM 14.64 .31 5.07
115cM 15.00 .59 4.03
120cM 15.63 1.01 2.42
125cM 15.20 .94 2.69
130cM 14.61 .90 3.49
135cM 14.16 .83 4.58
140cM 13.75 .68 5.70
145cM 13.57 .50 6.39
150cM 13.37 .31 7.22
155cM 13.46 .16 7.52
160cM 13.99 .07 6.94
165cM 14.80 .06 5.75
170cM 15.56 .16 4.48

To compare with the estimates from model in (5.3),
the results in Section 5 are also presented in Figures 7.1
and 7.2.
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Figure 7.1 Estimates of QTL variance component �2a for
pigs�phenotypes data along pig chromosome 6 (model
including �xed e¤ects, family e¤ects and QTL e¤ects).

Dashed line with circles refers to Figure 5.7.
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Figure 7.2 Values of likelihood ratio statistics for pigs�
phenotypes data along pig chromosome 6 (model

including �xed e¤ects, family e¤ects and QTL e¤ects).
The halothane gene a¤ecting meat quality is located at
80cM. Dashed line with circles refers to Figure 5.8.
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Di¤erence between each two curves in both Figure 7.1
and 7.2 is due to the omission of family e¤ects in (5.3).
Estimates and the values of LRT statistics in both models
are quite close. The trend of LRT statistic curve leads to
similar inference for the gene position.

8 Discussion

As mentioned in the article, other cases of HGLMs
like those in Table 3.1 can also be carried out by

modify parts of the implemented algorithm. Indicated
by Lee, Y., Nelder, J.A. and Pawitan, Y. (2006), for
other cases, we still have the augmented model with re-
sponse

�
y0, 0M

�0
, where E (y) = �, Var (y) = �V (�),

E ( M) = u and Var ( M) = �VM (u), and the aug-
mented linear predictor �Ma = (�

0,�0M)
0
= TM!, where

� =g (�) = X�+Zv, �M=gM (u) = v and ! =
�
�0, v0

�0
.

The augmented model matrix is

TM =

�
X Z
0 I

�
(8.1)

We will have VM() = V () if the HGLMs are conjugate,
i.e. integrating out the scale parameters. For di¤erent
GLM families, modi�cation should be done in the variance
function and the link function. In the IWLS algorithm, the
model equation is

T0M�
�1
M TM b! = T0M��1M zMa (8.2)

where zMa = (z0, z0M)
0 and �M = �MW

�1
Ma with �M =

diag (�,�), � =diag (�i ) and � =diag (�i ). The depen-
dent variables zMai = (zi , zMi ) for data (yi , M) are de-
�ned by

zi = �i + (yi � �i )
@�i
@�i

(8.3)

zMi = vi + ( M � ui )
@vi
@ui

(8.4)

with iterative weight matrix

WMa = diag (WM0,WM1) (8.5)

where

WM0i =

�
@�i
@�i

�2
V (�i )

�1 (8.6)

WM1i =

�
@ui
@vi

�2
VM (ui )

�1 (8.7)

Now that estimating VC models by using HGLM is
available, we may notice the advantages about model
checking as well. HGLMs �t the random e¤ects with a

generalized linear model, and during the estimation pro-
cedure, we obtain both residual sets of ei and vi . So that
checking the distribution of the response variable as well
as that of random e¤ects will be easy. Especially when
�tting a non-normal HGLM, if the sample size of random
e¤ects is large enough, we can not only �t a non-normal
distribution of random e¤ects but also simply check how
are the estimated vi residuals distributed.
In QTL analysis, if we don�t actually realize where the

gene is, we should give stronger evidence to show the sig-
ni�cance of the peak. This is not that easy. There is
no mature method to carry out a statistical test for test-
ing such a problem in accordance with the �gure. One
way of solving this is Monte-Carlo simulation, but it takes
time. Considering the null hypothesis that no signi�cant
gene exists along the chromosome, we can generate data
from a null model, say the model in (5.2), and estimate
for many times. After obtaining a �gure like Figure 5.8,
by comparing them we can construct a statistic to test
whether they are signi�cantly di¤erent from each other.
If signi�cant, we can then believe such a peak and �nd the
gene. We will not give the test by simulation, but we can
generally judge the peak from some other aspects. Rel-
atively above all, the peak is obviously higher than any
other parts of the curve. Since the points near this posi-
tion have a trend of "climbing up" to the peak, we can
regard that the �gure should not be randomly generated
but meant to be like this. Sometimes, these can also give
us some evidence to notice such a peak in QTL analysis.
We discovered the poor convergence e¢ ciency of the

HGLM algorithm, and to propose a way overcoming this
weakness, we consider an example from the article again.
We denote data of the HGLM convergence curve in Fig-
ure 6.2 to be � =(�0,�1, � � � ,�n), then �i should be
the value of the variance component �2a after i iterations
with the initial value 1. Let �i = �i+1 � �i be the
di¤erence between each two consecutive values, and let
�i = �i�1=�i . Then we obtain the results in Table 8.1.
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Table 8.1 Values for convergence analysis

Iteration No. �i �i �i
0 1.000000 7.862563
1 8.862563 �1.927950 �4.078200
2 6.934614 �0.931480 2.069771
3 6.003134 �0.462891 2.012310
4 5.540243 �0.233007 1.986596
5 5.307236 �0.118058 1.973659
6 5.189178 �0.060024 1.966860
7 5.129154 �0.030573 1.963286
8 5.098581 �0.015587 1.961426
9 5.082994 �0.007951 1.960467
10 5.075043 �0.004057 1.959974
11 5.070986 �0.002070 1.959722
12 5.068916 �0.001056 1.959593
13 5.067860 �0.000539 1.959527
14 5.067321 �0.000275 1.959493
15 5.067046 �0.000140 1.959476
16 5.066905 �0.000072 1.959467
17 5.066834 �0.000037 1.959463
18 5.066797 �0.000019 1.959460
19 5.066779 �0.000010 1.959459
20 5.066769

By observing the �i values, we can assume it to be a
constant for all iterations since it varies rather small after
some iterations, say �i = �. Thus we have �i�1=�i = �
for all iterations, from which we can derive the resultxivb� = �1 = �i +�i

�
1� ��1

��1
(8.8)

for all i . Since the �i values do not get stable in the be-
ginning iterations, we may not use the values like �0 and
�0. And choosing a � value really a¤ect the prediction.
To eliminate the iteration number in estimation proce-
dure, for instance, we can force the iteration number to
be no more than 10. This means, given the convergence
criterion, if the iterations converge within 10 times, the
�nal value of the iterations will be regarded as the esti-
mate; whereas if the iterations are not able to converge
at the tenth one, we will predict the estimate by substi-
tuting i = 9 into Equation (8.8) and taking � = �9. For
data in Table 8.1, considering the line in bold, we haveb� = �9 + �9

�
1� ��19

��1
= 5.066765. The true esti-

mate of the variance component is 5.066769. Hence the
predicting value is quite close to the true value.
Naturally, there is discredit about such a prediction,

i.e. the prediction becomes meaningless if the iterations
actually diverge! In fact, in some cases, we may have
already realized that the iterations must converge. How-
ever, sometimes we still need some method to judge con-
vergence before the algorithm. Schae¤er, L.R. (1979)

introduced the Common Intercept Approach (CIA) which
is shown to be equivalent to assuming a nonlinear model
for the convergence curve. This method can reduce the
required number of iterations to attain convergence, but
it can also be used for determining whether the system
will converge or not. Given two di¤erent starting values
�x0 and �z0, by assuming the � introduced previously to
be the same for both cases, we can derive the predictor

b� = �1 = (�x0�z0 ��z0�x0) = (�x0 ��z0) (8.9)

where �x0 and �z0 have the same de�nition as previous
corresponding to �x0 and �z0. We have two ways of ap-
plying this approach. A negative CIA predictor from (8.9)
indicates the iterations will not converge. Thus, we may
determine the convergence just after the �rst iteration by
setting up two di¤erent starting values and then apply the
previous method for prediction. We can also predict the
estimate directly from CIA. After determining the con-
vergence, substituting, say, �x5, �z5, �x5 and �z5 may
give a prediction close to the true value. The codes for
HGLM algorithm given in Appendix have several �exible
parameters in the function, where the prediction meth-
ods we discussed are included. Overcoming the e¢ ciency
problem of convergence for HGLM algorithm will make
this method more powerful when applying to various sit-
uations and larger data sets.
In this article, the HGLM algorithm for normal lin-

ear mixed models is implemented and evaluated with ap-
plications. The most important advantage of the algo-
rithm is that it can be easily extended to non-normal
HGLMs, when we have non-normal random e¤ects. We
have shown that the HGLM algorithm is feasible in esti-
mating variance components, especially in QTL analysis.
Comparing to Fisher Scoring method, the HGLM algo-
rithm has no problem of negative variance component
estimates because of gamma-GLM �tting. During this
comparison, we have also discovered that the HGLM al-
gorithm has very low e¢ ciency in convergence. To solve
this problem, we have discussed some prediction meth-
ods such as the Common Intercept Approach. Involving
predictors can make the HGLM algorithm more e¢ cient.

xivProof in detail for Equation (8.8) and (8.9) is given in Appendix.
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Appendix

Distribution of y (Response of Pigs�Pheno-
types Data)
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Figure A.1 Histogram of response variable y for pigs�
phenotypes data. It is assumed to be normally

distributed.

Proof of Equation (8.8)

Assuming �i = � for all iterations, we have

�i = �i�1=� (A.1)

= �i�2=�
2

= � � �
= �0=�

i

then

�i = �i�1 +�i�1 (A.2)

= �i�2 +�i�2 +�i�1

= � � �

= �0 +
i�1X
j=0

�j

= �0 +
i�1X
j=0

�0=�
j

= �0 +�0

i�1X
j=0

��j

Notice that

1X
j=0

��j = 1 +
1X
j=1

��j (A.3)

= 1 + ��1
1X
j=0

��j

which gives

1X
j=0

��j =
�
1� ��1

��1
(A.4)

Thus, let i in (A.2) go to in�nity, then we have the pre-
dictor

b� = �1 (A.5)

= �0 +�0

1X
j=0

��j

= �0 +�0
�
1� ��1

��1
Setting �i to be the starting value gives Equation (8.8).

Proof of Equation (8.9)

CIA assumes a common � for both cases with starting
values �x0 and �z0. From Equation (A.5), we have

�x1 = �x0 +�x0
�
1� ��1

��1
(A.6)

or �
1� ��1

��1
= (�x1 � �x0)��1x0 (A.7)

Then for the other case, we obtain

�z1 = �z0 +�z0
�
1� ��1

��1
(A.8)

= �z0 +�z0 (�x1 � �x0)��1x0

From convergence and the limit theory, there should be

�z1 = �x1 = �1 (A.9)

Substituting (A.9) into (A.8) and re-arranging the equa-
tion give Equation (8.9).
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R Codes of HGLM Algorithmi

####################################################
## Hierarchical Generalized Linear Models (HGLMs) ##
####################################################
HGLM <- function(family="normal", random.effect.number=1, y, X, Z, Z1, Z2, PI, specify.PI=F, starting=1,
critical.change=1e-5, max.n=200, prediction=F, pred.max.n=10, CIA=F, CIA.starting=2, std.error=F, profile=T, graphs=T,
printing=F, name="This Model"){
#################################################################################################################################
## Responsible Programmer: Xia Shen (h07xiash@du.se)
## Version: 1.0
## Date: 15 MAY 2008
## family is only available for normal case in this version.
## random.effect.number should be 1 or 2. For 1, Z1 and Z2 are not available.
## y is the response vector.
## X is the design matrix for fixed effects.
## Z, Z1 or Z2 are the design matrices for random effects.
## Default specify.PI is set to be FALSE, which requires Z or Z2. If TRUE, PI=ZZ' or Z2Z2' is required.
## Default starting is set to be 1, which is the initial value for variance components.
## Default critical.change is set to be .00001, which is the the critical value of change in variance components.
## Default max.n is set to be 200, which is the most iterations allowed.
## Default prediction is set to be FALSE. If TRUE, estimates may be obtained by prediction.
## Default pred.max.n is set to be 10, which indicates when to make a prediction and is only available if prediction=TRUE.
## Default CIA is set to be FALSE. If TRUE, Common Intercept Approach will be applied for judging convergence after 1 iteration.
## Default CIA.starting is set to be 2, which is the other initial value that only meaningful if CIA=TRUE.
## Default std.error is set to be FALSE. If TRUE, standard errors for variance components will be calculated.({numDeriv}required)
## Default profile is set to be TRUE, which gives the value of profile likelihood function.
## Default graphs is set to be TURE, which gives related figures.
## Default printing is set to be FALSE. If TRUE, detailed results of fitting will be printed out.
## Default name is set to be "This Model", which can include the specified name of the current model.
#################################################################################################################################
##########################################
## Model with Only 1 Random Effect Term ##
##########################################
if(random.effect.number==1) {

if(specify.PI==F) {psi_M <- rep(0, ncol(Z))} else {psi_M <- rep(0, ncol(PI))}
make.y_a <- function(y, psi_M) {c(y, psi_M)}
make.T <- function(X, Z) {

T1 <- cbind(X, Z)
T0 <- matrix(rep(0,ncol(Z)*ncol(X)),ncol(Z),ncol(X))
T2 <- cbind(T0, diag(ncol(Z)))
T <- rbind(T1, T2)
return(T)

}
make.Sigma_a <- function(Sigma, D) {

S0 <- matrix(rep(0,ncol(Sigma)*ncol(D)),ncol(Sigma),ncol(D))
T1 <- cbind(Sigma, S0)
T2 <- cbind(t(S0), D)
T <- rbind(T1, T2)
return(T)

}
sigma2 <- sigma2_v <- starting
tau0 <- c(sigma2, sigma2_v)
rec.tau <- tau0
Sigma <- tau0[1]*diag(nrow(X))
if(specify.PI==F) {D <- tau0[2]*diag(ncol(Z))}
else {

A <- svd(PI)
Z <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D <- tau0[2]*diag(ncol(Z))

}
Sigma_a <- make.Sigma_a(Sigma, D)
T. <- make.T(X, Z)
y_a <- make.y_a(y, psi_M)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
v <- delta[(ncol(X)+1):length(delta)]
rec.beta <- beta
rec.v <- v
H <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M <- NULL
for(i in 1:nrow(X)) {q[i] <- H[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z))) {q_M[i-nrow(X)] <- H[i,i]}
d <- (y-X%*%beta-Z%*%v)^2
d_M <- (psi_M-v)^2
d.star <- d/(1-q)
d.star_M <- d_M/(1-q_M)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v <- glm(d.star_M~1, family=Gamma(link=identity), weights=(1-q_M)/2)$coefficients
tau <- c(sigma2, sigma2_v)
###############################
## CIA Convergence Judgement ##
###############################
if(CIA==T) {

sigma2 <- sigma2_v <- CIA.starting
tau0 <- c(sigma2, sigma2_v)
Sigma <- tau0[1]*diag(nrow(X))
if(specify.PI==F) {D <- tau0[2]*diag(ncol(Z))}
else {

A <- svd(PI)
Z <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D <- tau0[2]*diag(ncol(Z))

}
Sigma_a <- make.Sigma_a(Sigma, D)
T. <- make.T(X, Z)
y_a <- make.y_a(y, psi_M)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
v <- delta[(ncol(X)+1):length(delta)]

iThis part of Appendix is the HGLM algorithm codes version for Windows c
, and the version for Mac OS c
 X is also available. For
the executable *.R �les, please visit Xia Shen�s homepage: http://xiashen.co.cc.
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H <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M <- NULL
for(i in 1:nrow(X)) {q[i] <- H[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z))) {q_M[i-nrow(X)] <- H[i,i]}
d <- (y-X%*%beta-Z%*%v)^2
d_M <- (psi_M-v)^2
d.star <- d/(1-q)
d.star_M <- d_M/(1-q_M)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v <- glm(d.star_M~1, family=Gamma(link=identity), weights=(1-q_M)/2)$coefficients
tau_CIA <- c(sigma2, sigma2_v)
pred_CIA <- ((tau-starting)*CIA.starting-(tau_CIA-CIA.starting)*starting)/((tau-starting)-(tau_CIA-CIA.starting))
if(min(pred_CIA)>=0) {

print(list(CIA=paste("CIA judgement indicates the iterations may converge with predictor", pred_CIA, ".")))}
if(max(pred_CIA)<0) {

print(list(CIA=paste("CIA judgement indicates the iterations may NOT converge with predictor",
pred_CIA, "!")))}

}
rec.tau <- cbind(rec.tau, tau)
n <- 1
conv <- F
dis <- max(abs(tau-tau0))
if(dis<=critical.change) {conv <- T}
if(prediction==T) {max.n <- pred.max.n}
while(dis>critical.change & n<=max.n-1) {

tau0 <- tau
Sigma <- tau0[1]*diag(nrow(X))
if(specify.PI==F) {D <- tau0[2]*diag(ncol(Z))}
else {

A <- svd(PI)
Z <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D <- tau0[2]*diag(ncol(Z))

}
Sigma_a <- make.Sigma_a(Sigma, D)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
rec.beta <- cbind(rec.beta, beta)
v <- delta[(ncol(X)+1):length(delta)]
rec.v <- cbind(rec.v, v)
Hat <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M <- NULL
for(i in 1:nrow(X)) {q[i] <- Hat[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z))) {q_M[i-nrow(X)] <- Hat[i,i]}
d <- (y-X%*%beta-Z%*%v)^2
d_M <- (psi_M-v)^2
d.star <- d/(1-q)
d.star_M <- d_M/(1-q_M)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v <- glm(d.star_M~1, family=Gamma(link=identity), weights=(1-q_M)/2)$coefficients
tau <- c(sigma2, sigma2_v)
rec.tau <- cbind(rec.tau, tau)
n <- n+1
dis <- max(abs(tau-tau0))

}
if(prediction==T & n==max.n) {

alpha <- rec.tau
Delta <- alpha[,2:ncol(alpha)]-alpha[,1:(ncol(alpha)-1)]
phi <- Delta[,1:(ncol(Delta)-1)]/Delta[,2:ncol(Delta)]
alpha_inf <- alpha[,n-1]+Delta[,n-1]/(1-1/phi[,n-2])
tau <- alpha_inf
rec.tau <- cbind(rec.tau, tau)
rec.beta <- cbind(rec.beta, beta)
rec.v <- cbind(rec.v, v)
n <- n+1
print(list(PREDICTION=paste("Estimates of variance components were predicted after", max.n, "iterations.")))

}
if(n<=max.n j prediction==T) {conv <- T} else {conv <- F}
if(conv==T) {

Cov.Effects <- solve(H)
H <- t(T.)%*%solve(Sigma_a)%*%T.
prof.tau <- function(tau) {

Sigma <- tau[1]*diag(nrow(X))
D <- tau[2]*diag(ncol(Z))
V <- Z%*%D%*%t(Z)+Sigma
p <- -.5*log(det(V))-.5*t(y-X%*%beta)%*%solve(V)%*%(y-X%*%beta)-.5*log(det(t(X)%*%solve(V)%*%X))
return(p)

}
sing <- F
if(std.error==T) {

Hessian <- hessian(prof.tau, tau, method="Richardson")
if(det(Hessian)<1e-10) {

sing <- T
print(list(HESSIAN=paste("Hessian matrix is detected to be singular,
standard errors of variance components are set to be 0.")))

}
else {Cov.tau <- -solve(Hessian)}

}
est <- matrix(rep(0,2*(length(beta)+length(v)+2)), length(beta)+length(v)+2, 2)
name.beta <- name.v <- NULL
for(i in 1:length(beta)) {

est[i,1] <- beta[i]
est[i,2] <- Cov.Effects[i,i]
name.beta <- c(name.beta, paste("beta_", as.character(i), sep=""))

}
for(i in (length(beta)+1):(length(beta)+length(v))) {

est[i,1] <- v[i-length(beta)]
est[i,2] <- Cov.Effects[i-length(beta)+1,i-length(beta)+1]
name.v <- c(name.v, paste("v_", as.character(i-length(beta)), sep=""))

}
est[length(beta)+length(v)+1,1] <- tau[1]
est[length(beta)+length(v)+2,1] <- tau[2]
if(std.error==T & sing==F) {

est[length(beta)+length(v)+1,2] <- Cov.tau[1,1]
est[length(beta)+length(v)+2,2] <- Cov.tau[2,2]
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}
dimnames(est) <- list(c(name.beta, name.v, "sigma.square", "sigma.square_v"), c("Estimate","Std.Error"))
est <- round(est, digits=6)
num.iteration <- paste("IWLS iterations for", name, "converged after", n, "times.")
if(prediction==T & n==max.n) {num.iteration <- paste("IWLS iterations for", name, "converged after",
n-1, "times.")}
if(profile==T) {

prof.likelihood <- paste("The profile likelihood function equals", prof.tau(tau), ".")
output <- list(ESTIMATES=est, LIKELIHOOD=prof.likelihood, ITERATION=num.iteration)

}
else {output <- list(ESTIMATES=est, ITERATION=num.iteration)}
print(output)
e <- y-X%*%beta-Z%*%v
if(printing==T) {

esty <- cbind(y, X%*%beta+Z%*%v, e)
dimnames(esty) <- list(1:length(y), c("y","Estimate","e-resid"))
print(esty)

}
if(graphs==T) {

m <- 0:n
########################
## Estimation Figures ##
########################
par(mfrow=c(3,2))
std.resid.e <- e/sqrt(1-q)
plot(0, rec.tau[1,1], xlim=c(0,n), ylim=c(min(rec.tau),max(rec.tau)), xlab="Number of Iteration",
ylab="Estimates of tau")
lines(m, rec.tau[1,], type="b", col=4)
lines(m, rec.tau[2,], type="b", col=2)
lines(0, rec.tau[1,1], type="p")
plot(m, rec.tau[1,]+rec.tau[2,], pch=19, col=2, xlab="Number of Iteration", ylab="Proportion of VC")
lines(m, rec.tau[2,], type="h", col=3)
plot(1:n, rec.beta[1,], type="b", ylim=c(min(rec.beta),max(rec.beta)), col=2, xlab="Number of Iteration",
ylab="Estimates of beta")
lines(1:n, rec.beta[1,], type="p", col=2)
if(ncol(X)>1) {for(i in 2:ncol(X)) {lines(1:n, rec.beta[i,], type="b", col=i+1)}}
plot(beta, type="h", col=3)
lines(1:length(beta), rep(0, length(beta)), col=4, lty=2)
lines(beta, type="p", col=2, pch=19)
plot(1:n, rec.v[1,], col=2, ylim=c(min(rec.v),max(rec.v)), xlab="Number of Iteration", ylab="Estimates of v")
lines(1:n, rec.v[1,], lty=2, col=2)
if(ncol(Z)>1) {for(i in 2:ncol(Z)) {lines(1:n, rec.v[i,], type="b", col=i+1)}}
plot(v, type="h", col=3)
lines(1:length(v), rep(0, length(v)), col=4, lty=2)
lines(v, type="p", col=2, pch=19)
############################
## Model Checking Figures ##
############################
windows()
par(mfrow=c(2,3))
plot(X%*%beta, std.resid.e, pch="+", col=4, xlab="Xbeta", ylab="Standard e Residuals")
qqnorm(std.resid.e, pch="+", xlab="Normal Order Statistics", ylab="Ordered Standard e Residuals",
col=4, main="")
qqline(std.resid.e, col=2)
hist(std.resid.e, density=20, col=4, xlab="Standard e Residuals", main="")
plot(y, d, pch="+", xlab="Response", ylab="Deviance Residuals", col=2)
sp <- mean(d)^2/var(d)
sc <- var(d)/mean(d)
qqplot(rgamma(9999,shape=sp,scale=sc),d, pch="+", xlab="Gamma Order Statistics", ylab="Ordered Deviance Residuals", col=2, main="")
abline(0,1, col=4)
hist(d, density=20, col=2, xlab="Deviance", main="")
###########################
## Model Fitting Figures ##
###########################
windows()
plot(y, col=2, pch=19, ylab="y apart from estimated y")
lines(X%*%beta+Z%*%v, col=4)
for(i in 1:length(y)) {lines(c(i,i),c(min(y[i], (X%*%beta+Z%*%v)[i]),max(y[i], (X%*%beta+Z%*%v)[i])),
lty=2, col=3)}
lines(y, type="p", col=2, pch=20)

}
}
else {print(paste("Iterations did NOT converge for", name, "!"))}

}
######################################
## Model with 2 Random Effect Terms ##
######################################
if(random.effect.number==2) {

psi_M1 <- rep(0, ncol(Z1))
if(specify.PI==F) {psi_M2 <- rep(0, ncol(Z2))} else {psi_M2 <- rep(0, ncol(PI))}
make2.y_a <- function(y, psi_M1, psi_M2) {c(y, psi_M1, psi_M2)}
make2.T <- function(X, Z1, Z2) {

T1 <- cbind(X, Z1, Z2)
T0 <- matrix(rep(0,(ncol(Z1)+ncol(Z2))*ncol(X)),ncol(Z1)+ncol(Z2),ncol(X))
T2 <- cbind(T0, diag(ncol(Z1)+ncol(Z2)))
T <- rbind(T1, T2)
return(T)

}
make2.Sigma_a <- function(Sigma, D1, D2) {

S12 <- matrix(rep(0,ncol(Sigma)*ncol(D1)),ncol(Sigma),ncol(D1))
S13 <- matrix(rep(0,ncol(Sigma)*ncol(D2)),ncol(Sigma),ncol(D2))
S23 <- matrix(rep(0,ncol(D1)*ncol(D2)),ncol(D1),ncol(D2))
T1 <- cbind(Sigma, S12, S13)
T2 <- cbind(t(S12), D1, S23)
T3 <- cbind(t(S13), t(S23), D2)
T <- rbind(T1, T2, T3)
return(T)

}
sigma2 <- sigma2_v1 <- sigma2_v2 <- starting
tau0 <- c(sigma2, sigma2_v1, sigma2_v2)
rec.tau <- tau0
Sigma <- tau0[1]*diag(nrow(X))
D1 <- tau0[2]*diag(ncol(Z1))
if(specify.PI==F) {D2 <- tau0[3]*diag(ncol(Z2))}
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else {
A <- svd(PI)
Z2 <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D2 <- tau0[3]*diag(ncol(Z2))

}
Sigma_a <- make2.Sigma_a(Sigma, D1, D2)
T. <- make2.T(X, Z1, Z2)
y_a <- make2.y_a(y, psi_M1, psi_M2)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
v1 <- delta[(ncol(X)+1):(ncol(X)+ncol(Z1))]
v2 <- delta[(ncol(X)+ncol(Z1)+1):length(delta)]
rec.beta <- beta
rec.v1 <- v1
rec.v2 <- v2
H <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M1 <- q_M2 <- NULL
for(i in 1:nrow(X)) {q[i] <- H[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z1))) {q_M1[i-nrow(X)] <- H[i,i]}
for(i in (nrow(X)+ncol(Z1)+1):(nrow(X)+ncol(Z1)+ncol(Z2))) {q_M2[i-nrow(X)-ncol(Z1)] <- H[i,i]}
d <- (y-X%*%beta-Z1%*%v1-Z2%*%v2)^2
d_M1 <- (psi_M1-v1)^2
d_M2 <- (psi_M2-v2)^2
d.star <- d/(1-q)
d.star_M1 <- d_M1/(1-q_M1)
d.star_M2 <- d_M2/(1-q_M2)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v1 <- glm(d.star_M1~1, family=Gamma(link=identity), weights=(1-q_M1)/2)$coefficients
sigma2_v2 <- glm(d.star_M2~1, family=Gamma(link=identity), weights=(1-q_M2)/2)$coefficients
tau <- c(sigma2, sigma2_v1, sigma2_v2)
###############################
## CIA Convergence Judgement ##
###############################
if(CIA==T) {

sigma2 <- sigma2_v1 <- sigma2_v2 <- CIA.starting
tau0 <- c(sigma2, sigma2_v1, sigma2_v2)
Sigma <- tau0[1]*diag(nrow(X))
D1 <- tau0[2]*diag(ncol(Z1))
if(specify.PI==F) {D2 <- tau0[3]*diag(ncol(Z2))}
else {

A <- svd(PI)
Z2 <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D2 <- tau0[3]*diag(ncol(Z2))

}
Sigma_a <- make2.Sigma_a(Sigma, D1, D2)
T. <- make2.T(X, Z1, Z2)
y_a <- make2.y_a(y, psi_M1, psi_M2)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
v1 <- delta[(ncol(X)+1):(ncol(X)+ncol(Z1))]
v2 <- delta[(ncol(X)+ncol(Z1)+1):length(delta)]
H <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M1 <- q_M2 <- NULL
for(i in 1:nrow(X)) {q[i] <- H[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z1))) {q_M1[i-nrow(X)] <- H[i,i]}
for(i in (nrow(X)+ncol(Z1)+1):(nrow(X)+ncol(Z1)+ncol(Z2))) {q_M2[i-nrow(X)-ncol(Z1)] <- H[i,i]}
d <- (y-X%*%beta-Z1%*%v1-Z2%*%v2)^2
d_M1 <- (psi_M1-v1)^2
d_M2 <- (psi_M2-v2)^2
d.star <- d/(1-q)
d.star_M1 <- d_M1/(1-q_M1)
d.star_M2 <- d_M2/(1-q_M2)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v1 <- glm(d.star_M1~1, family=Gamma(link=identity), weights=(1-q_M1)/2)$coefficients
sigma2_v2 <- glm(d.star_M2~1, family=Gamma(link=identity), weights=(1-q_M2)/2)$coefficients
tau_CIA <- c(sigma2, sigma2_v1, sigma2_v2)
pred_CIA <- ((tau-starting)*CIA.starting-(tau_CIA-CIA.starting)*starting)/((tau-starting)-(tau_CIA-CIA.starting))
if(min(pred_CIA)>=0) {

print(list(CIA=paste("CIA judgement indicates the iterations may converge with predictor", pred_CIA, ".")))}
if(max(pred_CIA)<0) {

print(list(CIA=paste("CIA judgement indicates the iterations may NOT converge with predictor",
pred_CIA, "!")))}

}
rec.tau <- cbind(rec.tau, tau)
n <- 1
conv <- F
dis <- max(abs(tau-tau0))
if(dis<=critical.change) {conv <- T}
if(prediction==T) {max.n <- pred.max.n}
while(dis>critical.change & n<=max.n-1) {

tau0 <- tau
Sigma <- tau0[1]*diag(nrow(X))
D1 <- tau0[2]*diag(ncol(Z1))
if(specify.PI==F) {D2 <- tau0[3]*diag(ncol(Z2))}
else {

A <- svd(PI)
Z2 <- A$u%*%diag(sqrt(A$d))%*%t(A$v)
D2 <- tau0[3]*diag(ncol(Z2))

}
Sigma_a <- make2.Sigma_a(Sigma, D1, D2)
T. <- make2.T(X, Z1, Z2)
y_a <- make2.y_a(y, psi_M1, psi_M2)
delta <- solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)%*%y_a
beta <- delta[1:ncol(X)]
v1 <- delta[(ncol(X)+1):(ncol(X)+ncol(Z1))]
v2 <- delta[(ncol(X)+ncol(Z1)+1):length(delta)]
rec.beta <- cbind(rec.beta,beta)
rec.v1 <- cbind(rec.v1,v1)
rec.v2 <- cbind(rec.v2,v2)
H <- T.%*%solve(t(T.)%*%solve(Sigma_a)%*%T.)%*%t(T.)%*%solve(Sigma_a)
q <- q_M1 <- q_M2 <- NULL
for(i in 1:nrow(X)) {q[i] <- H[i,i]}
for(i in (nrow(X)+1):(nrow(X)+ncol(Z1))) {q_M1[i-nrow(X)] <- H[i,i]}
for(i in (nrow(X)+ncol(Z1)+1):(nrow(X)+ncol(Z1)+ncol(Z2))) {q_M2[i-nrow(X)-ncol(Z1)] <- H[i,i]}
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d <- (y-X%*%beta-Z1%*%v1-Z2%*%v2)^2
d_M1 <- (psi_M1-v1)^2
d_M2 <- (psi_M2-v2)^2
d.star <- d/(1-q)
d.star_M1 <- d_M1/(1-q_M1)
d.star_M2 <- d_M2/(1-q_M2)
sigma2 <- glm(d.star~1, family=Gamma(link=identity), weights=(1-q)/2)$coefficients
sigma2_v1 <- glm(d.star_M1~1, family=Gamma(link=identity), weights=(1-q_M1)/2)$coefficients
sigma2_v2 <- glm(d.star_M2~1, family=Gamma(link=identity), weights=(1-q_M2)/2)$coefficients
tau <- c(sigma2, sigma2_v1, sigma2_v2)
rec.tau <- cbind(rec.tau, tau)
n <- n+1
dis <- max(abs(tau-tau0))

}
if(prediction==T & n==max.n) {

alpha <- rec.tau
Delta <- alpha[,2:ncol(alpha)]-alpha[,1:(ncol(alpha)-1)]
phi <- Delta[,1:(ncol(Delta)-1)]/Delta[,2:ncol(Delta)]
alpha_inf <- alpha[,n-1]+Delta[,n-1]/(1-1/phi[,n-2])
tau <- alpha_inf
rec.tau <- cbind(rec.tau, tau)
rec.beta <- cbind(rec.beta, beta)
rec.v1 <- cbind(rec.v1,v1)
rec.v2 <- cbind(rec.v2,v2)
n <- n+1
print(list(PREDICTION=paste("Estimates of variance components were predicted after", max.n, "iterations.")))

}
if(n<=max.n j prediction==T) {conv <- T} else {conv <- F}
if(conv==T) {

H <- t(T.)%*%solve(Sigma_a)%*%T.
Cov.Effects <- solve(H)
prof.tau <- function(tau) {

Sigma <- tau[1]*diag(nrow(X))
D1 <- tau[2]*diag(ncol(Z1))
D2 <- tau[3]*diag(ncol(Z2))
V <- Z1%*%D1%*%t(Z1)+Z2%*%D2%*%t(Z2)+Sigma
p <- -.5*log(det(V))-.5*t(y-X%*%beta)%*%solve(V)%*%(y-X%*%beta)-.5*log(det(t(X)%*%solve(V)%*%X))
return(p)

}
sing <- F
if(std.error==T) {

Hessian <- hessian(prof.tau, tau, method="Richardson")
if(det(Hessian)<1e-10) {

sing <- T
print(list(HESSIAN=paste("Hessian matrix is detected to be singular,
standard errors of variance components are set to be 0.")))

}
else {Cov.tau <- -solve(Hessian)}

}
est <- matrix(rep(0,2*(length(beta)+length(v1)+length(v2)+3)), length(beta)+length(v1)+length(v2)+3, 2)
name.beta <- name.v1 <- name.v2 <- NULL
for(i in 1:length(beta)) {

est[i,1] <- beta[i]
est[i,2] <- Cov.Effects[i,i]
name.beta <- c(name.beta, paste("beta_", as.character(i), sep=""))

}
for(i in (length(beta)+1):(length(beta)+length(v1))) {

est[i,1] <- v1[i-length(beta)]
est[i,2] <- Cov.Effects[i-length(beta)+1,i-length(beta)+1]
name.v1 <- c(name.v1, paste("v1_", as.character(i-length(beta)), sep=""))

}
for(i in (length(beta)+length(v1)+1):(length(beta)+length(v1)+length(v2))) {

est[i,1] <- v2[i-length(beta)-length(v1)]
est[i,2] <- Cov.Effects[i-length(beta)-length(v1)+1,i-length(beta)-length(v1)+1]
name.v2 <- c(name.v2, paste("v2_", as.character(i-length(beta)-length(v1)), sep=""))

}
est[length(beta)+length(v1)+length(v2)+1,1] <- tau[1]
est[length(beta)+length(v1)+length(v2)+2,1] <- tau[2]
est[length(beta)+length(v1)+length(v2)+3,1] <- tau[3]
if(std.error==T & sing==F) {

est[length(beta)+length(v1)+length(v2)+1,2] <- Cov.tau[1,1]
est[length(beta)+length(v1)+length(v2)+2,2] <- Cov.tau[2,2]
est[length(beta)+length(v1)+length(v2)+3,2] <- Cov.tau[3,3]

}
dimnames(est) <- list(c(name.beta, name.v1, name.v2, "sigma.square", "sigma.square_v1", "sigma.square_v2"),
c("Estimate","Std.Error"))
est <- round(est, digits=6)
num.iteration <- paste("IWLS iterations for", name, "converged after", n, "times.")
if(prediction==T & n==max.n) {num.iteration <- paste("IWLS iterations for", name, "converged after",
n-1, "times.")}
if(profile==T) {

prof.likelihood <- paste("The profile likelihood function equals", prof.tau(tau), ".")
output <- list(ESTIMATES=est, LIKELIHOOD=prof.likelihood, ITERATION=num.iteration)

}
else {output <- list(ESTIMATES=est, ITERATION=num.iteration)}
print(output)
e <- y-X%*%beta-Z1%*%v1-Z2%*%v2
if(printing==T) {

esty <- cbind(y, X%*%beta+Z1%*%v1+Z2%*%v2, e)
dimnames(esty) <- list(1:length(y), c("y","Estimate","e-resid"))
print(esty)

}
if(graphs==T) {

m <- 0:n
########################
## Estimation Figures ##
########################
par(mfrow=c(4,2))
std.resid.e <- e/sqrt(1-q)
plot(0, rec.tau[1,1], xlim=c(0,n), ylim=c(min(rec.tau),max(rec.tau)), xlab="Number of Iteration",
ylab="Estimates of tau")
lines(m, rec.tau[1,], type="b", col=4)
lines(m, rec.tau[2,], type="b", col=2)
lines(m, rec.tau[3,], type="b", col=3)
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lines(0, rec.tau[1,1], type="p")
plot(m, rec.tau[1,]+rec.tau[2,]+rec.tau[3,], pch=19, col=2, xlab="Number of Iteration",
ylab="Proportion of VC")
lines(m, rec.tau[2,]+rec.tau[3,], type="h", col=4)
lines(m, rec.tau[2,], type="h", col=3)
plot(1:n, rec.beta[1,], type="b", ylim=c(min(rec.beta),max(rec.beta)), col=2, xlab="Number of Iteration",
ylab="Estimates of beta")
lines(1:n, rec.beta[1,], type="p", col=2)
if(ncol(X)>1) {for(i in 2:ncol(X)) {lines(1:n, rec.beta[i,], type="b", col=i+1)}}
plot(beta, type="h", col=3)
lines(1:length(beta), rep(0, length(beta)), col=4, lty=2)
lines(beta, type="p", col=2, pch=19)
plot(1:n, rec.v1[1,], col=2, ylim=c(min(rec.v1),max(rec.v1)), xlab="Number of Iteration",
ylab="Estimates of v1")
lines(1:n, rec.v1[1,], lty=2, col=2)
if(ncol(Z1)>1) {for(i in 2:ncol(Z1)) {lines(1:n, rec.v1[i,], type="b", col=i+1)}}
plot(v1, type="h", col=3)
lines(1:length(v1), rep(0, length(v1)), col=4, lty=2)
lines(v1, type="p", col=2, pch=19)
plot(1:n, rec.v2[1,], col=2, ylim=c(min(rec.v2),max(rec.v2)), xlab="Number of Iteration",
ylab="Estimates of v2")
lines(1:n, rec.v2[1,], lty=2, col=2)
if(ncol(Z2)>1) {for(i in 2:ncol(Z2)) {lines(1:n, rec.v2[i,], type="b", col=i+1)}}
plot(v2, type="h", col=3)
lines(1:length(v2), rep(0, length(v2)), col=4, lty=2)
lines(v2, type="p", col=2, pch=19)
############################
## Model Checking Figures ##
############################
windows()
par(mfrow=c(2,3))
plot(X%*%beta, std.resid.e, pch="+", col=4, xlab="Xbeta", ylab="Standard e Residuals")
qqnorm(std.resid.e, pch="+", xlab="Normal Order Statistics", ylab="Ordered Standard e Residuals",
col=4, main="")
qqline(std.resid.e, col=2)
hist(std.resid.e, density=20, col=4, xlab="Standard e Residuals", main="")
plot(y, d, pch="+", xlab="Response", ylab="Deviance Residuals", col=2)
sp <- mean(d)^2/var(d)
sc <- var(d)/mean(d)
qqplot(rgamma(9999,shape=sp,scale=sc),d, pch="+", xlab="Gamma Order Statistics", ylab="Ordered Deviance Residuals", col=2, main="")
abline(0,1, col=4)
hist(d, density=20, col=2, xlab="Deviance", main="")
###########################
## Model Fitting Figures ##
###########################
windows()
plot(y, col=2, pch=19, ylab="y apart from estimated y")
lines(X%*%beta+Z1%*%v1+Z2%*%v2, col=4)
for(i in 1:length(y)) {lines(c(i,i),c(min(y[i],(X%*%beta+Z1%*%v1+Z2%*%v2)[i]),
max(y[i],(X%*%beta+Z1%*%v1+Z2%*%v2)[i])), lty=2, col=3)}
lines(y, type="p", col=2, pch=20)

}
}
else {print(paste("Iterations did NOT converge for", name, "!"))}

}
}

R Codes of FS Algorithm
REML_FS<-function(reml.method="FS",y,X,n_comp,conv_crit,n_maxiter,lambda_start,delta,IBDformat=FALSE,
Z1=0,Z2=0,Zepi=0,IBD1=0,IBD2=0,IBD3=0,IBD4=0,IBD5=0,print_results=FALSE,step=1,neg.Hessian.OK=FALSE) {
#############################################################################################################
## Responsible programmer: Lars Rönnegård (lrn@du.se)
## Latest Modification by Xia Shen (h07xiash@du.se)
## Only the reml.method of FS (Fisher Scoring) is given.
## y: Response vector
## X: Design matrix for fixed effects
## n_comp: Number of different random effects in the model (<6 if IBDformat==TRUE, otherwise <4)
## conv_crit: Value that the change in variance components should be less than
## n_maxiter: Maximum number of iterations
## lambda_start: Initial ratio of variance components
## delta: Value added to truncation at zero
## IBDformat: The structure of the random effects can be given either as incidence matrices or IBD matrices.
#############################################################################################################
print("REML iteration number")
min.error<-10^-8
count_test=0
n_comp1<-n_comp+1
n_rows<-length(y)
A<-matrix(0,(n_comp1*n_rows),n_rows)
Aj<-matrix(0,n_rows,n_rows)
if (n_comp>0) {
if (IBDformat==FALSE) {
for (i_comp in 1:n_comp) {

if (i_comp==1) Aj<-Z1%*%t(Z1)
if (i_comp==2) Aj<-Z2%*%t(Z2)
if (i_comp==3) Aj<-Zepi%*%t(Zepi)
A[((i_comp-1)*n_rows+1):(n_rows*i_comp),1:n_rows]<-Aj
}

}
if (IBDformat==TRUE) {
for (i_comp in 1:n_comp) {

if (i_comp==1) Aj<-IBD1
if (i_comp==2) Aj<-IBD2
if (i_comp==3) Aj<-IBD3
if (i_comp==4) Aj<-IBD4
if (i_comp==5) Aj<-IBD5
A[((i_comp-1)*n_rows+1):(n_rows*i_comp),1:n_rows]<-Aj
}

}
}
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A[(n_comp*n_rows+1):(n_comp1*n_rows),1:n_rows]<-diag(rep(1,n_rows))
#Algorithm from Johnson&Thompson

#A is a matrix with all ibd-matrices on top of each other with the identity matrix at the bottom
res_var<-var(y-X%*%solve(t(X)%*%X)%*%t(X)%*%y)
phi_start<-numeric(n_comp1)
for (i in 1:(n_comp1-1)) {

phi_start[i]<-1
}

phi_start[n_comp1]<-1
#############################
##if (reml.method=="FS") { ##
#############################

dimIBD<-min(dim(A))
M_phi<-matrix(0,(n_maxiter+1),n_comp1)
M_phi[1,1:n_comp1]<-phi_start[1:n_comp1]
phi<-numeric(n_comp1)
DL<-numeric(n_comp1)
DL[1:n_comp1]<-conv_crit+1
FS<-matrix(0,n_comp1,n_comp1)
Aj<-matrix(0,dimIBD,dimIBD)
Ak<-matrix(0,dimIBD,dimIBD)
llh.prev<-1+conv_crit
llh<-0
phi0<-0
phi1<-1
rec.val<-rec.phi<-NULL
for (i in 1:n_maxiter){

V<-matrix(0,dimIBD,dimIBD)
if (max(abs(phi1-phi0))>conv_crit & count_test<3){

phi<-M_phi[i,]
phi0<-phi
for (j in 1:n_comp1){

Aj<-A[((j-1)*dimIBD+1):(j*dimIBD),1:dimIBD]
V<-V+phi[j]*Aj
}

invV<-solve(V)
temp<-solve(t(X)%*%invV%*%X)
P<-invV-invV%*%X%*%(temp)%*%t(X)%*%invV
for (j in 1:n_comp1){

Aj<-A[((j-1)*dimIBD+1):(j*dimIBD),1:dimIBD]
DL[j]<-sum(diag(Aj%*%P))-t(y)%*%P%*%Aj%*%P%*%y
for (k in j:n_comp1) {

Ak<-A[((k-1)*dimIBD+1):(k*dimIBD),1:dimIBD]
FS[j,k]<-sum(diag(Aj%*%P%*%Ak%*%P))
FS[k,j]<-FS[j,k]

}
}
FS.egen<-eigen(FS, only.values=TRUE)
#Condition number based 070330
FS.min<-FS.egen$values[n_comp1]/FS.egen$values[1]
if (FS.min>min.error j neg.Hessian.OK) {

M_phi[(i+1),]<-phi-step*solve(FS)%*%DL
count_test=0
}

if (FS.min<=min.error) {
print("Negative Hessian")
count_test=count_test+1
identitet<-diag(rep((0.3+abs(min(FS.egen$values))),min(dim(FS))))
if (!neg.Hessian.OK) M_phi[(i+1),]<-phi-step*solve(FS+identitet)%*%DL

}

egen<-eigen(V, only.values=TRUE)
if (min(egen$values>0))ldV<-sum(log(egen$values))
egen2<-eigen(t(X)%*%invV%*%X, only.values=TRUE)
ldXVX<-sum(log(egen2$values))
llh.prev<-llh
if (min(egen$values)>0) llh<-(ldV+ldXVX+t(y)%*%P%*%y)*(-0.5)
if (min(egen$values)<=0) llh<-llh.prev-1
#Truncation at zero
M_phi[(i+1),]<-0.5*(M_phi[(i+1),]+delta+abs(M_phi[(i+1),]-delta))
phi1<-M_phi[(i+1),]
rec.phi <- rbind(rec.phi,phi1)
conv_val<-max(abs(phi1-phi0))
rec.val <- c(rec.val, conv_val)
if (print_results==TRUE) {

print("---------------------")
print("Iteration:")
print(i)
print("Convergence criteria: Change in phi")
print(conv_val)
print("log-likelihood")
print(llh)
print("REML estimates of variance components")
print("Genotype variance [1] and residual variance [2]")
print(M_phi[(i+1),])

}
if (print_results==FALSE) print(paste(" ",i))

}
}

}
conv_test<-1
if (max(abs(phi1-phi0))>conv_crit) conv_test<-0
beta_hat<-numeric(min(dim(X)))
beta_hat<-solve(t(X)%*%invV%*%X)%*%t(X)%*%invV%*%y
if (print_results==TRUE) {

print("Estimates of fixed effects")
print(beta_hat)
}

list(beta_hat=beta_hat,conv_test=conv_test,conv_val=conv_val,phi=phi,phi_iteration=M_phi,llh=llh)
res <- cbind(rec.phi,rec.val)
dimnames(res) <- list(NULL, c("sigma.square_v", "sigma.square", "Change in tau"))
return(res)
}
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