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Abstract

A two-way linear mixed model with three variance components as �21, �
2
2 and �

2
e is applied

to evaluate the performance of modi�ed Henderson�s method 3 developed by Al-Sarraj and Rosen
(2007). The focus of modi�ed procedure is on the estimation of �21 which variance components is
mainly concerned. The modi�ed estimator is expected to perform better than unmodi�ed Hen-
derson�s method 3 in terms of MSE. But it also follows the demerits of unmodi�ed one, i.e. lost
uniqueness, negative estimates. The criteria used to show the performance of modi�ed estimator
compared with unmodi�ed one, ML and REML are bias, MSE and the probability of getting nega-
tive estimate. Al-Sarraj and Rosen (2007) suggested us to divide the estimation of �21 of Henderson�s
method 3 and its modi�ed into Partition I and Partition II. One way to solve the problem of lost
unique estimators is to compare the MSE of Partition I and II, then select the one with smaller
MSE. The performances of these estimators in terms of MSE are shown by the means of simulations.
MSE e¤ects of imbalance and number of observations are given. Based on the MSE comparison
of Partition I and II, there should exist a boundary value of �22 to favor Partition I, otherwise II.
From the e¤ects of �22 and �

2
1 to MSE, a �small�values range of �

2
2 < 0:1 is recommended to prefer

to the Partition I of Henderson�s method 3 and its modi�ed compared with Partition II. Then, a
ratio range of �22=�

2
1 < 1:0 is obtained for wide application. Modi�ed Henderson�s method 3 has

achieved substantially improvement over unmodi�ed one in terms of MSE, as well as the probability
of getting negative estimate. It is also computationally faster than ML and REML and may for
some cases performs better in terms of MSE. The split-plot design experiment application shows
us that the modi�ed estimator can improve unmodi�ed one.
Keywords: Variance components, Modi�ed Henderson�s method 3, MSE, Monte Carlo simu-

lation.
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1 INTRODUCTION

Notation list

MSE Mean Square Errors
SSR Reduction in sum of squares
SST Total sum of squares
SSE Residual error sum of squares
REML Restricted Maximum Likelihood
ML Maximum Likelihood
n Obersvations
N Sample size ( number of simulations)
p Levels in u1
q Levels in u2
b Numbers of fixed effects
σ2 Variance components
σ̂2

u1 Estimator of Partition I for Henderson’s method 3
σ̂2

1 Estimator of Partition II for Henderson’s method 3
σ̂2

11 Estimator of Partition I for modified Henderson’s method 3
σ̂2

12 Estimator of Partition II for modified Henderson’s method 3
σ̂2

u1REML Estimator of REML
σ̂2

u1ML Estimator of ML

1 Introduction

1.1 Background

Variance components estimation has a wide application, i.e. genetics, pharmacy and econometrics. The model
applied is a kind of hierarchical linear model assuming a hierarchy of different populations which yields random
effects. It is reasonable to add random effects to classical linear model which includes fixed effects only. McCulloch
and Searle (2002) provided a decision tree to assist us to decide whether the parameters are fixed or not. The rule is
that if we can reasonably assume the levels of the factor come from a probability distribution, then treat the factor as
random; otherwise fixed. The likelihood ratio test to decide whether the random effects exist or not was introduced
in Giampami and Singer (2009). If the model contains both fixed and random effects, we can extend classical model
to mixed linear model which is commonly used.

Inquiring for an appropriate method to estimate variance components has attached much attention in statisti-
cal research in different experiments. The most commonly used method for balanced data is analysis of variance
(ANOVA) which equates the observed mean squares to their expected values and the variance components esti-
mates are obtained by the solving these equations. Graybill and Hultquist (1961) illustrated that ANOVA estimators
were the best quadratic unbiased estimators (BQUE) and has minimum variance among other unbiased estimators
with the quadratic functions of observations. The ANOVA estimator could get negative estimates which may cause
terrible problems to analyze. In general case, the data are often unbalanced. As long as the ANOVA being used
in unbalanced data, their good properties except unbiasedness of this estimator are lost. Rao (1972) introduced a
method called Minimum Variance Quadratic Unbiased Estimation (MIVQUE). A priori values must be supplied be-
fore the application of MIVQUE. Only if perfect priori values equaling to the true values of the variance components
are given, this estimator will achieve minimum sample variance. For a one-way classification random model under
normality with σ2

a and σ2
e , MIVQUE used to estimate σ2

a often has much smaller variance than the usual ANOVA
estimator and they differ a little based on numerical results; see Swallow and Searle (1978). The applications of Max-
imum Likelihood (ML) together with its comparison with Restricted Maximum Likelihood REML based on some
algorithms were described in Harville (1977). ML approaches are used to estimate variance components by maxi-
mizing the likelihood over the positive space of the variance components parameters. Some of attractive features
and deficiencies for ML are given, i.e. takes no account of the loss in degrees of freedom resulting form estimating
the fixed effects. Restricted maximum likelihood (REML) was developed by Patterson and Thompson (1971) to
modified ML which considers the loss of freedom degrees and corrects the bias of ML. Many of iterative algorithms
such as Newton-Raphson and Fisher score are used for the REML and ML variance components estimation. We

2



1.2 Aim and Outline of the Article 1 INTRODUCTION

can not expect that a single numerical computing process yields a prefect estimate both form REML and ML. The
converge rate, computational requirements and special properties of experiments are seen as important rules to find
appropriate algorithms. As a limitation of the ML and REML estimators, the experiments with large observations
may cause computational problem calculated by iterative algorithms.

Three well known Henderson’s methods to solve difficulty with unbalanced data for estimating variance com-
ponents are developed by Henderson (1953). All the three are adaptations of the ANOVA method of equating
analysis of variance sums of squares to their expected values. The estimators are unbiased, but they also have de-
merits, i.e. negative estimates, different solutions yielded from the different set of equations for the same parameter;
see Searle, Casella and McCulloch (1992). Al-Sarraj and Rosen (2007) modified the Henderson’s method 3 by relax
the unbiasedness to improve it in terms of MSE. The estimator obtained from the new method is expected to have
smaller MSE than unmodified one. That is where we shall test via the means of simulations in the article. The
performane of the new modified estimator compared with ML and REML should also be considered.

There are no perfect estimators in all experiments with the applications of these methods referred above. Sev-
eral estimators applied to practical data set can produce substantially different results. Christensen, Pearson and
Johnson (1992) showed examples that the values of estimates yielded by the ANOVA, ML and REML are uncom-
monly different. So some criteria are in need to evaluate the performance of the different estimators. Generally,
the unbiased estimators are required because its good properties, i.e. closest to the true value when sample size is
large. Corbeil and Searle (1976) considered the mean squared errors (MSE) as one of the criterion. The MSE1 which
includes both the dispersion and deviation degrees for an estimator is a measure to quantify the distance between
estimates and true values. It is a function of sample variance and bias for the estimators. The unbiased estimator
with smallest MSE performs better than other estimators. But, sometimes the biased estimators may have a smaller
MSE than the unbiased ones. According to the definition of sample distribution for the estimators, the rules to pre-
fer which kind of estimators are derived. Since the unbiased estimators are closer to the true values in this situation;
if the experiments are repeated for many times the unbiased estimators with larger MSE are favored over the biased
estimators with smaller MSE. Otherwise, if the experiments took place only once or repeated few times, the biased
estimators with smaller MSE are preferred. Moreover, Kelly and Mathew (1994) recommended that the explicit an-
alytic expressions with easy computation for estimators is considered. Since the estimates of variance components
should be positive according to its definition, the probability of getting negative estimate is also seen as a measure
to show the difference among the estimators. The noniterative estimators with explicit expression unlike ML and
REML, i.e. mainly concerned estimators of σ̂2

u1 and σ̂2
11, are compared together with σ̂2

1, σ̂2
12, σ̂2

u1REML and σ̂2
u1ML in

terms of these criteria described above.

1.2 Aim and Outline of the Article

The aim of the article is to evaluate modified Henderson’s method 3 with the application of two-way linear mixed
model by the means of simulations compared with unmodified one, REML and ML. As a new method obtained from
the Henderson’s method 3, the modified estimator is expected to achieve some improvements over the unmodified
one. Moreover, this new method is a noniterative estimator which should be favored over iterative estimators i.e.
ML and REML. It is necessary and meaningful to show its performance by comparison with the other estimators,
especially the unmodified one. The criteria to evaluate are given in subsection 1.1. The MSE is considered as the
main concern because of its wide application and good properties, i.e. often used with aim of comparison between
different estimators, and includes both the effects of variance and bias.

In section 1, a simple introduction about the variance components estimations is first given. This section also
states the aim and proposes the mixed model used in our article. The methods of unmodified and modified Hen-
derson’s method 3 together with ML and REML are described in section 2. The process and results of Monte Carlo
comparison are shown in section 3. In section 3, the differences between examples are described by the measure
of imbalance. We also recommend which situation is the modified Henderson’s method 3 favored over the other
estimators. Furthermore, in section 4, the Henderson’s method 3 and its modified, ML and REML are implemented
to apply the Split-Plot design experiment. The results also show the modified estimator perform well compared
with unmodified one. Based on the analysis simulation and data application results, the conclusion in section 5 is
drawn that modified Henderson’s method 3 can be suggested as the appropriate estimator in terms of MSE. Finally
the limitations of the modified Henderson’s method 3 are described in section 6.

1The definitions of the bias and MSE are given in APPENDIX B
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2 METHODOLOGY

2 Methodology

2.1 Two-Way Mixed Linear Mixed Model

We consider the two-way mixed model in matrix form:

Y = Xβ+ Z1u1 + Z2u2 + e (1)

where Yn�1 is the observation vector and distributed as a multivariate normal MVN (Xβ, V) with V = σ2
1Z

0
1Z1 +

σ2
2Z

0
2Z2+ σ2

e , V1 = Z
0
1Z1 and V2 = Z

0
2Z2 are also defined. Xn�1 is the full column rank design matrix for fixed effects,

Z1(n�p) and Z1(n�p) are design matrices for random effects, e is the error term which is distributed as multivariate
e � MVN

�
0, σ2

e I
�
. β is the fixed effects, u1 and u2 with p and q levels are the random effects which are distributed

as multivariate u1 � MVN
�
0, σ2

1 I
�
, u2 � MVN

�
0, σ2

2 I
�

respectively. Let us define σ2 =
�
σ2

1, σ2
2, σ2

e
�0

which is so
called variance components. The σ2

1 is only interested because the modified procedure is focus on the estimation of
this variance components. Then six different estimators of σ2

1 are proposed in our article. We calculate the biases,
probability of getting negative estimate and MSE of to evaluate modified Henderson’s method 3 by the comparison
with the others.

2.2 Henderson’s Method 3

The method named Henderson’s Method 3 is first established by Henderson (1953). Together with it, another
two methods, the Henderson’s Method 1 and Henderson’s Method 2 are also derived. The differences of them lie
in the quadratic forms and experiments application. If the three of Henderson’s methods apply to the balanced
data, their estimates are the same as each other. The Henderson’s Method 3 is focused on the issue of variance
component estimation for unbalanced data. The core procedures are to solve the equations of the reductions in sums
of squares of the quadratic forms and their expectations. Its advantages include no strong distribution assumption,
and unbiased estimator as well. And the demerits can be noticed in the aspects of negative estimates and no
unique estimators which is caused by the no unique set of decompositions of the reductions in sums of squares to
estimate. In order to solve the problem of lost unique estimators, Al-Sarraj and Rosen (2007) suggested us to divide
decompositions used to estimate into Partition I with three variance components and Partition II with two variance
components respectively. So Partition I and II are compared in terms of MSE. Then the one has smaller MSE would
be selected as the appropriate estimator, otherwise the other. The Partition I or II with smaller MSE can also be
chosen to modify.

2.2.1 Variance Components Estimator for Partition I

The theory of reductions in sums of squares is introduced by Searle (1987). Let R (�) denotes the reductions in sums
of squares which is equal to the SSR of some linear models. For the one-way random model yij = µ+ αi + eij where
i is the level of random effects α and j is the observations of each i, the difference of R(µ, α)� R (µ) interprets the
reductions in sums of squares due to fitting to the random effect α after µ that is already considered. Hence, let
us define the notation R (�/�) to denote the difference of the reductions in sums of squares between the different
models. The R (�) and R (�/�) are distributed as non-central χ2 under the normality assumption. Searle (1987) also
showed these reductions in sums of squares and their differences are independent of each other and of SSE.

The submodels of full model (1) used to obtain estimation equations in Al-Sarraj and Rosen (2007) are given as:

Y = Xβ+ e for R (β)
Y = Xβ+ Z1u1 + e for R (β, u1)
Y = Xβ+ Z2u2 + e for R (β, u2)

There are two sets of estimation equations can be considered because of three elements.8<: R (u1/β)
R (u2/β, u1)

SSE

9=; or

8<: R (u1/β)
R (u1/u2, β)

SSE

9=;
4



2.2 Henderson’s Method 3 2 METHODOLOGY

where the SSE denotes the residual error sum of squares.

Define the projection matrix as Pω = ω
�

ω
0
ω
��

ω
0
which is idempotent2 matrix. Hence, the first set of the above

equations is suggested by Al-Sarraj and Rosen (2007) to estimate the Partition I of Henderson’s method 3 and the
following of projection matrices for estimation are proposed.

Px = X
�

X
0
X
��

X

Px1 = (X, Z1)
�
(X, Z1)

0
(X, Z1)

��
(X, Z1)

0

Px12 = (X, Z1, Z2)
�
(X, Z1, Z2)

0
(X, Z1, Z2)

��
(X, Z1, Z2)

0

By using the projection matrices given above, the differences of reductions in sums of squares R (�/�) used to
equate their expectations are:

R (u1/β) = R (β, u1)� R (β) = Y
0
(Px1 � Px)Y

R (u2/β, u1) = R (β, u1, u2)� R (β, u1) = Y
0
(Px12 � Px1)Y

SSE = Y
0
Y� R (β, u1, u2) = Y

0
(I � Px12)Y

Their expectations are presented below:

E

264 Y
0
(Px1 � Px)Y

Y
0
(Px12 � Px1)Y

Y
0
(I � Px12)Y

375 = J

24 σ2
1

σ2
2

σ2
e

35 (2)

where J =

24 tr (Px1 � Px)V1 tr (Px1 � Px)V2 tr (Px1 � Px)
tr (Px12 � Px1)V1 tr (Px12 � Px1)V2 tr (Px12 � Px1)
tr (I � Px12)V1 tr (I � Px12)V2 tr (I � Px12)

35
Since Px1V1 = V1, Px12V2 = V2 and Px12V1 = V1 where V1 and V2 are defined in subsection 2.1, the simple form

of J is

J =

24 tr ((Px1 � Px)V1) tr ((Px1 � Px)V2) tr (Px1 � Px)
0 tr ((Px12 � Px1)V2) tr (Px12 � Px1)
0 0 tr (I � Px12)

35
Here let us define some notations to simplify to express

A = (Px1 � Px) , B = (Px12 � Px1) , C = (I � Px12) ,
a = tr((Px1 � Px)V1), b = tr ((Px12 � Px1)V2) , c = tr (I � Px12)

d = tr ((Px1 � Px)V2) , e = tr ((Px12 � Px1)V1) , f = tr (Px1 � Px) (3)

Here σ̂2
u1 is denoted the estimator of σ2

1 for Partition I of Henderson’s method 3. Then by solving the equations
in (2), the estimates of variance components are24 σ̂2

u1
σ̂2

2
σ̂2

e

35 = J�1

264 Y
0
(Px1 � Px)Y

Y
0
(Px12 � Px1)Y

Y
0
(I � Px12)Y

375 (4)

Thus the expression of σ̂2
u1 with simple form is:

σ̂2
u1 =

Y
0
AY
a

�
d
�

Y
0
BY
�

ab
+

k
�

Y
0
CY
�

abc
(5)

2Matrix A satisfies AA = A, it can be seen as a idempotent matrix
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2.2 Henderson’s Method 3 2 METHODOLOGY

where k = d� e� f � b and the notations are defined in (3).
Hence, the sample variance of σ̂2

u1 is calculated as:

D
�

σ̂2
u1

�
=
h

2
a3 tr (AV1 AV1)

i
σ4

1

+
h

2
a2 tr (AV2 AV2) +

2d2

a2b2 tr (BV2BV2)
i

σ4
2

+
h

4
a2 tr (AV1 AV2)

i
σ2

1σ2
2 +

h
4
a2 tr (AV1 A)

i
σ2

1σ2
e (6)

+
h

4
a2 tr (AV2 A) + 4d2

a2b2 tr (BV2B)
i

σ2
2σ2

e

+
h

2
a2 tr (AA) + 2d2

a2b2 tr (BB) + 2k2

a2b2c2 tr (CC)
i

σ4
e

where the notations are the same as in (3).
Since σ̂2

u1 is an unbiased estimator, so the predicted MSE of σ̂2
u1 is MSE

�
σ̂2

u1

�
= D

�
σ̂2

u1

�
. From the equation

(6), MSE
�

σ̂2
u1

�
includes six terms and depends on σ2

1, σ2
2 and σ2

e .

2.2.2 Variance Components Estimator for Partition II

There are more sets of equations for estimation than variance components. In order to solve this problem, Al-Sarraj
and Rosen (2007) developed the variance components estimator for Partition II to estimate σ2

1 with different set
based on the model (1). The MSE of partition II is also calculated. We compare the MSE of Partition I and II, and
then select the one with smaller MSE to modify.

Then the projection matrix used to estimate the Partition II is:

Px2 = (X, Z2)
�
(X, Z2)

0
(X, Z2)

��
(X, Z2)

0

The set of estimation equations for the Partition II is given:�
R (u1/β, u2)

SSE

�
Where R (u1/β, u2) = R (β, u1, u2)� R (β, u2)

= Y
0
(Px12 � Px2)Y

and SSE = Y
0
Y� R (β, u1, u2) = Y

0
(I � Px12)Y

The expectation of equations used to estimate partition II of are

E

"
Y
0
(Px12 � Px2)Y

Y
0
(I � Px12)Y

#
= K

�
σ2

1
σ2

e

�
(7)

where K =
�

tr ((Px12 � Px2)V1) tr (Px12 � Px2)
0 (I � Px12)

�
Some notations are defined to simplify:

E = Px12 � Px2, g = tr ((Px12 � Px2)V1) , l = tr (Px12 � Px2) (8)

Here σ̂2
1

3 is denoted the estimator for Partition I of Henderson’s method 3. Then by solving the equations in (7),
the estimates of variance components are�

σ̂2
1

σ̂2
e

�
= K�1

"
/Y
0
(Px12 � Px2)Y

Y
0
(I � Px12)Y

#
(9)

Thus, the expression of estimator for Partition II σ̂2
1 is:

3The estimator σ̂2
1 can be obtained from the reduced model method which is discussed in APPENDIX D
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2.3 Modified Henderson’s Method 3 2 METHODOLOGY

σ̂2
1 =

1
g

Y
0
EY� l

cg
Y
0
CY (10)

where the notations are used in (3) and (8)
The sample variance of σ̂2

1 is calculated:

D
�

σ̂2
1

�
=
h

2tr(EV1EV1)
g2

i
σ4

1

+
h

4tr(EV1E)
g2

i
σ2

1σ2
e (11)

+
h

2tr(EE)
g2 + 2l2

g2c

i
σ4

e

Because of its unbiasedness, so the MSE of σ̂2
1 is MSE

�
σ̂2

1

�
= D

�
σ̂2

1

�
. From the equation (14), MSE

�
σ̂2

1

�
includes three terms and depends on σ2

1 and σ2
e . Variance components σ2

2 does not effect MSE
�

σ̂2
1

�
.

MSE
�

σ̂2
u1

�
and MSE

�
σ̂2

1

�
Comparison It is obvious to see the difference of (6) and (11). The equation (6) includes

the terms of σ4
2, σ2

1σ2
2 and σ2

2σ2
e which (14) does not have. If the σ2

1 and σ2
e are fixed, there should exist a boundary

value of σ2
2 which make MSE

�
σ̂2

u1

�
= MSE

�
σ̂2

1

�
. There is a ascending trend of MSE

�
σ̂2

u1

�
for increasing σ2

2.

Hence, if σ̂2
u1 is conerned, a ’small’ values range of σ2

2 which makes MSE
�

σ̂2
u1

�
< MSE

�
σ̂2

1

�
can be obtained to

prefer to σ̂2
u1 in terms of MSE. The ’small’ values range of σ2

2 to favor σ̂2
u1 is confirmed by the means of simulations

in section 3.

2.3 Modified Henderson’s Method 3

Here we summarize the theory of modified Henderson’s method 3 developed by Al-Sarraj and Rosen (2007). It
is applied to improve the estimation equations of Henderson’s method 3 by multiplying some constants. These
constants to modify Henderson’ method 3 are determined by minimizing the coefficients of leading terms in its
MSE, i.e. σ4

1 and σ2
e . The modified estimator relaxes unbiasedness caused by the constants, but it should perform

better than unmodified one in terms of MSE. It also has no unique estimators and is divided in to Partition I and II
which are similar with the unmodified estimators σ̂2

u1 and σ̂2
1.

2.3.1 Modified Variance Components Estimator for Partition I

Here σ̂2
11 denotes Partition I of modified Henderson’s method 3. σ̂2

11 is modified from the Partition I of unmodified
estimator σ̂2

u1. Based on the set of equations (4), a new class of equations is presented:

E

264 c1Y
0
(Px1 � Px)Y

c1d1Y
0
(Px12 � Px1)Y

c1d2Y
0
(I � Px12)Y

375 = J

24 σ2
1

σ2
2

σ2
e

35 (12)

Where J is the same as in equation (2), and c1 � 0, d1 and d2 are defined as the constants to be determined by
minimizing the leading terms of MSE of σ̂2

11.
By solving equation (12), we have the expression of variance components estimation.24 σ̂2

11
σ̂2

2
σ̂2

e

35 = J�1

264 c1Y
0
(Px1 � Px)Y

c1d1Y
0
(Px12 � Px1)Y

c1d2Y
0
(I � Px12)Y

375 (13)

The expression of σ̂2
11 is obtained from equation (13):

σ̂2
11 =

c1Y
0
AY

a
�

c1d1d
�

Y
0
BY
�

ab
+

c1d2k
�

Y
0
CY
�

abc
(14)

7
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Where the notations are the same as in (3)
The sample variance of σ̂2

11 is

D
�

σ̂2
11

�
=

�
2c2

1
a3 tr (AV1 AV1)

�
σ4

1

+

�
2c2

1
a2 tr (AV2 AV2) +

2c2
1d2

1d2

a2b2 tr (BV2BV2)

�
σ4

2

+

�
4c2

1
a2 tr (AV1 AV2)

�
σ2

1σ2
2 +

�
4c2

1
a2 tr (AV1 A)

�
σ2

1σ2
e (15)

+

�
4c2

1
a2 tr (AV2 A) + 4c2

1d2
1d2

a2b2 tr (BV2B)
�

σ2
2σ2

e

+

�
2c2

1
a2 tr (AA) + 2c2

1d2
1d2

a2b2 tr (BB) + 2c2
1d2

2k2

a2b2c2 tr (CC)
�

σ4
e

Since unbiasedness is lost, we calculate the expectation of σ̂2
11:

E
�

σ̂2
11

�
=
� c1

a tr (AV1)
�

σ2
1

+
�

c2
a tr (AV2)� c1d1d

ab tr (BV2)
�

σ2
2 (16)

+
�

c1
a tr (A)� c1d1d

ab tr (B) + c1kd2
abc tr (C)

�
σ2

e

The bias of σ̂2
11 is obtained from equation (15).

Bias
�

σ̂2
11

�
= E

�
σ̂2

11

�
� σ2

1

=
� c1

a tr (AV1)� 1
�

σ2
1

+
�

c2
a tr (AV2)� c1d1d

ab tr (BV2)
�

σ2
2 (17)

+
�

c1
a tr (A)� c1d1d

ab tr (B) + c1kd2
abc tr (C)

�
σ2

e

Thus, based on equations of (14) and (16), the MSE of σ̂2
11 is:

MSE
�

σ̂2
11

�
= D

�
σ̂2

11

�
+ Bias2

�
σ̂2

11

�
=

�
2c2

1
a3 tr (AV1 AV1) + (c1 � 1)2

�
σ4

1

+

�
2c2

1
a2 tr (AV2 AV2) +

2c2
1d2

1d2

a2b2 tr (BV2BV2) + r2
�

σ4
2

+

�
4c2

1
a2 tr (AV1 AV2) + 2 (c1 � 1) r

�
σ2

1σ2
2 (18)

+

�
4c2

1
a2 tr (AV1 A) + 2 (c1 � 1) t

�
σ2

1σ2
e

+

�
4c2

1
a2 tr (AV2 A) + 4c2

1d2
1d2

a2b2 tr (BV2B) + 2rt
�

σ2
2σ2

e

+

�
2c2

1
a2 tr (AA) + 2c2

1d2
1d2

a2b2 tr (BB) + 2c2
1d2

2k2

a2b2c2 tr (CC) + t2
�

σ4
e

with r = c1d
a � dc1d1

a and t = c1
a tr (A)� dc1d1

ab tr (B) + c1kd2
ab

In order to achieve expectation results that MSE
�

σ̂2
11

�
� MSE

�
σ̂2

u1

�
, we need to obtain appropriate values

of constants used in equation (13). Based on several steps of comparison with the coefficients of σ4
1, σ4

2 and σ4
e of

MSE
�

σ̂2
11

�
, Al-Sarraj and Rosen (2007) gave us the results of constants:

c1 =
1

2
a2 tr (AV1 AV1) + 1

(19)

8



2.3 Modified Henderson’s Method 3 2 METHODOLOGY

d1 =
1

2
b2 tr (BV2BV2) + 1

(20)

d2 =
d
b d1tr (B)� tr (A)�

k
b

� � 2
c + 1

� (21)

The above three constants have been verified that they minimize the coefficients terms of σ4
1, σ4

2 and σ2
e respec-

tively in equation (18). Then the coefficients of the three terms are smaller than the same terms respectively in
equation (6). Moreover, there are three remaining cross terms corresponding to σ2

1σ2
2, σ2

1σ2
e and σ2

2σ2
e in (18) need to

compare with the same terms in (6).
Two conditions corresponding to cross terms of MSE

�
σ̂2

11

�
must be satisfied to have the remaining cross terms

smaller are established by Al-Sarraj and Rosen (2007).

Condition 1 tr (A) � d
b d1tr (B) and tr (A) � d

b tr (B)� (2+c)(1+c1)
c1

Condition 2 tr (A) > d
b d1tr (B) and d1 = 1

After the constants in (19), (20) and (21) are estimated, if one of the conditions given above is satisfied, we have
the MSE

�
σ̂2

11

�
� MSE

�
σ̂2

u1

�
. Then σ̂2

u1 can be reasonable to modify to σ̂2
11 in terms of MSE.

2.3.2 Modified Variance Components Estimator for Partition II

Here σ̂2
12

4 is defined as the Partition II of modified Henderson’s method 3. The set of equations to solve σ̂2
11 is similar

with σ̂2
1.

E

"
c2Y

0
(Px12 � Px2)Y

c2ε1Y
0
(I � Px12)Y

#
= K

�
σ2

1
σ2

e

�
(22)

where the constants c2, ε1 to modify σ̂2
1 are determined by minimizing the leading terms of MSE

�
σ̂2

12

�
, i.e. σ4

1

and σ4
e .

The expression of the variance components estimations is given by solving equation (22).�
σ̂2

12
σ̂2

e

�
= K�1

"
c2 /Y

0
(Px12 � Px2)Y

c2ε1Y
0
(I � Px12)Y

#
(23)

So, the estimator σ̂2
12 is obtained from equation (23):

σ̂2
12 =

c2

g
Y
0
EY� c2ε1l

cg
Y
0
CY (24)

The sample variance of σ̂2
12 is:

D
�

σ̂2
12

�
=

�
2c2

2tr(EV1EV1)

g2

�
σ4

1

+

�
4c2

2tr(EV1E)
g2

�
σ2

1σ2
e (25)

+

�
2c2

2tr(EE)
g2 +

2c2
2ε2

1l2

g2c

�
σ4

e

Then the bias of σ̂2
12 is calculated as:

4The estimator similar with σ̂2
1 can also be obtained from the reduced model method.
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Bias
�

σ̂2
12

�
= (c2 � 1) σ2

1 +

�
c2l
g
� c2ε1l

g

�
σ2

e (26)

Based on equations (25) and (26) the MSE
�

σ̂2
12

�
is given:

MSE
�

σ̂2
12

�
= D

�
σ̂2

12

�
+ Bias2

�
σ̂2

12

�
=

�
2c2

2tr(EV1EV1)

g2 + (c2 � 1)2
�

σ4
1 (27)

+

�
4c2

2tr(EV1E)
g2 + 2 (c2 � 1) c2l

g

�
1� l

g

��
σ2

1σ2
e

+

�
2c2

2tr(EE)
g2 +

2c2
2ε2

1l2

g2c +
�

c2l
g

�
1� l

g

��2
�

σ4
e

In order to achieve the expectation result that MSE
�

σ̂2
12

�
� MSE

�
σ̂2

1

�
. The contants of c2 and ε1are also ob-

tained by minimizing the coefficients of σ4
1 and σ4

e involving the leading terms in MSE
�

σ̂2
12

�
. The results suggested

from Kelly and Mathew (1994) are given in (28) and (29) respectively.

c2 =
1

2
g2 (EV1EV1) + 1

(28)

ε1 =
1

2
c + 1

(29)

It is verified that the two constants minimize the coefficients corresponding to σ4
1 and σ4

e in (27). That means
the coefficients of terms of and in (27) are smaller than the same terms in (11) respectively. Moreover, Al-Sarraj and
Rosen (2007) suggested a condition which is satisfied to have the cross coefficients terms of σ2

1σ2
e in (27) smaller than

the same term in (9)

Condition 3 tr (EV1E) � 2g(c2�1)(c2�ε1)

4(1�c2
2)

If the constants in (28) and (29) are estimated, and the above condition is satisfied, then σ̂2
12 is favored over σ̂2

1 in
terms of MSE.

MSE
�

σ̂2
11

�
and MSE

�
σ̂2

12

�
Comparison The difference between MSE

�
σ̂2

11

�
and MSE

�
σ̂2

12

�
is similar with

MSE
�

σ̂2
u1

�
and MSE

�
σ̂2

1

�
. Hence, if σ̂2

11 is concerned, a ’small’ values range of σ2
2 can also be obtained by means

of simulations to choose σ̂2
11 rather than σ̂2

12 in terms of MSE.

2.4 Maximum Likelihood (ML) and Restricted Maximum Likelihood (REML)

2.4.1 Equations to Estimate σ̂2
u1ML and σ̂2

u1REML

σ̂2
u1ML is defined as the estimator of ML. For mixed model in (1), the log-likelihood function for ML is

log LML = �
n
2

log 2π � 1
2

log jVj � 1
2
(Y� Xβ)

0
V�1 (Y� Xβ) (30)

Then we take the first and second derivatives of the equation (30) with respect to β and variance components σ2

respectively, Searle, Casella and McCulloch (1992) gave us the equations.
First:

∂ log LML
∂β

= X
0
V�1Y� X

0
V�1Xβ (31)

10
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∂ log LML

∂σ2
i

= �1
2

tr
�

V�1ZiZ
0
i

�
+

1
2
(Y� Xβ)

0
V�1ZiZ

0
iV
�1 (Y� Xβ) (32)

Second:

∂2 log LML

∂σ2
i σ2

j
= �1

2
tr
�

V�1ZiZ
0
iV
�1ZjZ

0
j

�
� 1

2
(Y� Xβ)

0
V�1ZiZ

0
iV
�1ZjZ

0
j (Y� Xβ) (33)

The elements of ML information martrix which is defined as IML

� E

 
∂2 log LML

∂σ2
i σ2

j

!
=

1
2

tr
�

V�1ZiZ
0
iV
�1ZjZ

0
j

�
(34)

with i = j = 0, 1, 2, σ2
0 = σ2

e and Z0Z
0
0 = I (35)

Since there are nonlinear forms to estimate the elements of in (32) and (33), the solutions of ML are usually
obtained by iterative algorithms.

σ̂2
u1REML

5 is defined as the estimator of REML. REML is an unbiased esatimtor modified from ML. For model
(1), the log-likelihood function for the REML is

log LREML = �
n
2

log 2π � 1
2

log jVj � 1
2

log
���X0

V�1X
���� 1

2
(Y� Xβ)

0
V�1 (Y� Xβ) (36)

Similar with the ML approach, the derivatives to maximize (35) with respect to β and variance components σ2

the equations are given by Harville (1977):
First:

∂ log LREML
∂β

= X
0
V�1Y� X

0
V�1Xβ (37)

∂ log LREML

∂σ2
i

= �1
2

tr
�

PZiZ
0
i

�
(38)

+
1
2
(Y� Xβ)

0
V�1ZiZ

0
iV
�1 (Y� Xβ)

Second:

∂2 log LREML

∂σ2
i σ2

j
= �1

2
tr
�

P
�

∂2V/∂2σ2
i σ2

j � ZiZ
0
i PZjZ

0
j

��
� 1

2
(Y� Xβ)

0
V�1

�
∂2V/∂2σ2

i σ2
j � 2ZiZ

0
i PZjZ

0
j

�
V�1 (Y� Xβ)

(39)
The elements of REML information matrix which is defined as IREML

� E

 
∂2 log LREML

∂σ2
i σ2

j

!
=

1
2

tr
�

PZiZ
0
i PZjZ

0
j

�
(40)

where P = V�1 �V�1X
�

X
0
V�1X

�0
X
0
V�1 and the notations are the same as (35)

5We use lmer( ) function of lme4 package in R to estimate σ̂2
u1ML and σ̂2

u1REML
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2.5 Measure of Imbalance 2 METHODOLOGY

2.4.2 Summary of Algorithms

The algorithms of the Newton-Raphson and the Fisher score are commonly used for ML and REML variance com-
ponents estimation. We give a summary of the two algorithms. The application of iterative algorithms to estimate
σ̂2

u1ML and σ̂2
u1REML are similar with each other.

Let L
�
σ2� be the likelihood of variance components σ2 for ML or REML of model (1). The aim is to find the

solution σ̂2 of when the L
�
σ2� is maxima.

A brief description of Newton-Raphson algorithm is given as follows.
The first gradient of L

�
σ2� with σ2 is defined as O

�
σ2�:

O
�

σ2
�
=

 
∂ log L

�
σ2�

∂σ2
1

,
∂ log L

�
σ2�

∂σ2
2

,
∂ log L

�
σ2�

∂σ2
e

!
(41)

Then the second of derivative of L
�
σ2� with σ2 is denoted by H. Here the is an 3� 3 symmetric matrix H with

elements hij =
∂2 log L(σ2)

∂σ2
i σ2

j
where i and j are defined in (35). Now the Taylor’s second series of O

�
σ2� with the

starting values σ2
(0) is:

O
�

σ̂2
�
= O

�
σ2
(0)

�
+ H0

�
σ2
� �

σ2 � σ̂2
�

(42)

If σ̂2 make the maximum of L
�
σ2�, then O

�
σ̂2
�
= 0 which can be replaced in (42).

The solution of σ̂2 is:

σ̂2 = σ2
(0) � H�1

0

�
σ2
�
O
�

σ2
(0)

�
(43)

After mth iteration, the Newton-Raphson algorithm is:

σ2
(m+1) = σ2

(m) � H�1
m

�
σ2
�
O
�

σ2
(m)

�
(44)

Under the converge restriction which depends on the special requirements of real experiments, σ2
(m+1) ! σ̂2

when O
�

σ2
(m+1)

�
� 0.

Davidson (2003) introduce the Fisher’s score algorithm which is similar with Newton-Raphson.
Let us define Fisher score S

�
σ2�which is equal to O

�
σ2�. By replacing the �H0

�
σ2�with its expectation in (42)

which is the so called information matrix denoted by I . Hence we have the iterative solution of for Fisher score:

S
�

σ̂2
�
= S

�
σ2
(0)

�
� I0

�
σ2
� �

σ2 � σ̂2
�

(45)

So, After mth iteration, the Fisher score algorithm is:

σ2
(m+1) = σ2

(m) + I
�1
m

�
σ2
�
O
�

σ2
(m)

�
(46)

Under the converge restriction which depends on the special requirements of real experiments, σ2
(m+1) ! σ̂2

when S
�

σ2
(m+1)

�
� 0.

2.5 Measure of Imbalance

Since the number of observations of each level for random effects are different in unbalanced data, a measure is
needed to test the imbalanceness of the data. Applied to model (1), the observation number n is also defined as the
structure of observations in different levels of random effects.

n = (n1, n2, . . . nm) and n̄ = 1
m ∑ ni where m = p or q and i = 1, . . . , p or 1, . . . , q

12



3 MONTE CARLO COMPARISON AND SIMULATIONS

There are three principles satisfied to construct the measures which are introduced by Ahrens and Pincus (1981).
For example, a simple function of the ’s symmetric in its arguments and reflect in a specified way properties of sta-
tistical analyses. The paper also proposed several principles satisfied measures as the candidates. These measures
indentify to each other under some transformations. So, one of them applied in the article is given.

νm (n) =
1

m ∑
� ni

n
�2 (47)

where n = ∑ ni, m = p or q and i = 1, . . . p or 1, . . . q.
We have 1

m � νm (n) < 1 in the unbalanced data and the smaller value denotes more imbalance. Largest
νm (n) = 1 is only for balanced data. Khuri, Mathew and Sinha (1998) showed that the sample variance of increases
as the imbalance increasing.

For a two-way mixed model (1), νp (n) and νq (n) denote the imbalance for design matrix Z1 and Z2 and respec-
tively. Here we suggest that the equation ν (n) = 0.5νp (n) + 0.5νq (n) is used to calculate the whole imbalance of
the examples used in our essay.

3 Monte Carlo Comparison and Simulations

In order to compare variance components estimators from balanced to unbalanced data, the comparisons need to
process under a variety of examples and true values of components. Swallow and Monahan (1984) illustrated that
given the true values of variance components, the subgroup means and subgroup sums of squares are sufficient
for the variance components estimators. This is exploited in our Monte Carlo simulation by using modified polar
method (Marsglia and Bray, 1964) for generating normal random variables. The examples used to study the eval-
uations of modified Henderson’s method 3 are given in APPENDIX A and are the same as in Al-sarraj and Rosen
(2007). The reasons and questions about the examples choosing are discussed in section 6. The measure described
in subsection 2.5 for test imbalance is utilized to show the difference of examples in subsection 3.1. The MSE effects
of σ2

2 to the σ2
1 estimation of Henderson’s method 3 and its modified are described in subsection 3.2. From the Table

3-1 and Table 3-2, the ’small’ values ranges of σ2
2 for different examples are obtained. The ranges of σ2

2 suggest us to
prefer to σ̂2

u1 and σ̂2
11 in terms of MSE based on comparison with σ̂2

1 and σ̂2
12. The reason of using the ’small’ values

range of σ2
2 is given in subsection 2.2 and 2.3. Then, from MSE effects of σ2

2 and σ2
1, we suggest a range σ2

2 < 0.1
when σ2

1 = 0.1 to apply all the examples. In this case, σ̂2
u1ML and σ̂2

u1REML are added to compare with four estimators
of Henderson’s method 3 and its modified. Hence, the bias and probability of getting negative estimate are used
as the criteria to show the performances of six estimators. Furthermore, with the aim of extending our analysis to
wide application, the range of ratio σ2

2/σ2
1 < 1.0 is checked. Since all the estimators should benefit from larger n,

the difference of relationship between n and estimators are figured out in subsection 3.5.

3.1 Effects of Imbalance

The values of imbalance to show the differences between examples are given in table 3-1.

Table 3-1: The imbalace measure for each example

Example n p q νp (n) νq (n) ν (n)
1 8 2 2 1 1 1
2 8 2 2 0.9412 0.9412 0.9412
3 8 2 2 0.8000 0.9412 0.8706
4 21 3 3 0.9439 0.9866 0.9653
5 30 3 3 0.8571 0.7937 0.8254
6 30 4 3 0.8858 0.8772 0.8815

Example 1 is balanced data, 2 and 4 are almost balanced. The examples 3, 5 and 6 are more unbalancedness than
the others. In order to describe the relationship between the imbalance and the MSE of σ̂2

u1 and σ̂2
11. The observation

n, p, q must be fixed. Since all the examples 1, 2 and 3 have n = 8, p = 2, q = 2, then this three examples are applied.
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Hence, the true values of variance components σ2 = (1, 1, 1). The MSE
�

σ̂2
u1

�
and MSE

�
σ̂2

11

�
are calculated by

equations (6) and (18).
Figure 3-1 clearly shows that MSE

�
σ̂2

u1

�
are sensitive to the changing imbalance and have a increasing trend as

the data becoming more imbalance. While MSE
�

σ̂2
11

�
are similar with each other and also have a slight rising trend

for larger imbalance. That means σ̂2
11 is more robust and performing better than σ̂2

u1 as the changes of imbalance.

0.85 0.90 0.95 1.00

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

v(n)

M
SE

Imbalance effect of MSE for n=8

Figure 3-1: Imbalace effect of MSE for n = 8, p = 2 and q = 2. σ2
1 = 1, σ2

2 = 1 and σ2
e = 1.

Solid line with circles is MSE
�

σ̂2
u1

�
,and the dashed line with triangles is MSE

�
σ̂2

11

�

3.2 MSE Effets of σ2
2

There are two Partitions for Henderson’s method 3 and its modified. Based on the comparison between equations
(6) and (11), equations (17) and (27), there exist a range of σ2

2 to make MSE
�

σ̂2
u1

�
< MSE

�
σ̂2

1

�
and MSE

�
σ̂2

11

�
<

MSE
�

σ̂2
12

�
.Then the main task of this part is to find the ‘small’ values range of σ2

2 so that σ̂2
u1 and σ̂2

11 are recom-

mended in terms of MSE compared with σ̂2
1 and σ̂2

12 respectively. The true values used in our simulations are µ = 0,
σ2

1 = 0.1, σ2
e = 0.9 and 10 different of σ2

2 =0.01, 0.05, 0.1, 0.15, 0.25, 0.5, 0.75, 1, 1.5, 2 which range form 0.01 to 2. The
equations to estimate σ̂2

u1, σ̂2
1, σ̂2

11 and σ̂2
12 respectively are (5), (10), (14) and (24) based on N = 1000 simulations.

The estimated biases are the difference between mean of estimates and true value σ2
1 = 0.1. The observed MSE is

calculated by the observed sample variance and estimated squared biases. The formula of observed MSE, estimated
biases and sample mean are given in APPENDIX B. The observed MSE of σ̂2

u1 and σ̂2
1 to compare the predicted MSE

in (6) and (11) are shown in Table 3-2. The ‘small’ values range of σ2
2 to favor σ̂2

u1 are σ̂2
1 is also listed. Moreover,

the observed MSE to compare with the predicted MSE of σ̂2
11 and σ̂2

12 in (17) and (27) are given in Table 3-3 which is
similar with Table 3-2.
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Table 3-2: The observed MSE of σ̂2
u1 and σ̂2

1 for estimation of σ2
1

based on 10 different σ2
2, µ = 0, σ2

1 = 0.1 and σ2
e = 0.9 with N = 1000 simulations

σ2
2

Ex. Es. 0.01 0.05 0.1 0.15 0.25 0.5 0.75 1 1.5 2 ’small’ σ2
2

1 σ̂2
u1 0.2351 0.2399 0.2453 0.2053 0.2129 0.2051 0.2417 0.2209 0.2340 0.2254 None

σ̂2
1 0.2351 0.2399 0.2453 0.2053 0.2129 0.2051 0.2417 0.2209 0.2340 0.2254

2 σ̂2
u1 0.2759 0.2420 0.2785 0.2575 0.2574 0.2429 0.2622 0.2462 0.2710 0.2693 σ2

2<0.15
σ̂2

1 0.2755 0.2440 0.2845 0.2604 0.2524 0.2423 0.2579 0.2463 0.2643 0.2583
3 σ̂2

u1 0.4255 0.3340 0.3626 0.3556 0.4291 0.3418 0.3962 0.3467 0.4597 0.4496 σ2
2<0.15

σ̂2
1 0.4343 0.3418 0.3802 0.3552 0.4510 0.3359 0.3726 0.3159 0.3683 0.4073

4 σ̂2
u1 0.0805 0.0918 0.1103 0.1246 0.1653 0.4000 0.5294 0.9613 1.4926 3.0523 σ2

2<0.25
σ̂2

1 0.1498 0.1876 0.1452 0.1364 0.1418 0.1480 0.1306 0.1536 0.1463 0.1424
5 σ̂2

u1 0.0458 0.0447 0.0471 0.0499 0.0635 0.0952 0.1336 0.1977 0.3163 0.4955 σ2
2<0.25

σ̂2
1 0.0635 0.0568 0.0644 0.0541 0.0562 0.0603 0.0585 0.0587 0.0553 0.0589

6 σ̂2
u1 0.0413 0.0560 0.0580 0.0673 0.1031 0.1839 0.2575 0.3835 0.5989 0.8223 σ2

2<0.10
σ̂2

1 0.0490 0.0575 0.0499 0.0530 0.0560 0.0508 0.0582 0.0527 0.0568 0.0563

Table 3-3: The observed MSE of σ̂2
11 and σ̂2

12 for estimation of σ2
1

based on 10 different σ2
2, µ = 0, σ2

1 = 0.1 and σ2
e = 0.9 with N = 1000 simulations

σ2
2

Ex. Es. 0.01 0.05 0.1 0.15 0.25 0.5 0.75 1 1.5 2 ’small’ σ2
2

1 σ̂2
11 0.0269 0.0277 0.0280 0.0235 0.0249 0.0240 0.0270 0.0256 0.0266 0.0264 None

σ̂2
12 0.0269 0.0277 0.0280 0.0235 0.0249 0.0240 0.0270 0.0256 0.0266 0.0264

2 σ̂2
11 0.0312 0.0274 0.0312 0.0288 0.0292 0.0279 0.0292 0.0282 0.0305 0.0309 σ2

2<0.25
σ̂2

12 0.0311 0.0276 0.0318 0.0290 0.0287 0.0278 0.0287 0.0281 0.0297 0.0298
3 σ̂2

11 0.0464 0.0363 0.0397 0.0392 0.0468 0.0376 0.0430 0.0383 0.0500 0.0495 σ2
2<0.5

σ̂2
12 0.0471 0.0370 0.0414 0.0391 0.0491 0.0369 0.0404 0.0352 0.0403 0.0445

4 σ̂2
11 0.0182 0.0208 0.0236 0.0251 0.0308 0.0745 0.0954 0.1955 0.2844 0.5231 σ2

2<0.25
σ̂2

12 0.0277 0.0336 0.0275 0.0258 0.0261 0.0276 0.0246 0.0283 0.0268 0.0264
5 σ̂2

11 0.0122 0.0120 0.0124 0.0127 0.0149 0.0196 0.0273 0.0340 0.0643 0.0914 σ2
2<0.15

σ̂2
12 0.0135 0.0126 0.0138 0.0125 0.0126 0.0133 0.0130 0.0125 0.0125 0.0127

6 σ̂2
11 0.0137 0.0180 0.0176 0.0191 0.0299 0.0567 0.0821 0.1226 0.2198 0.3137 σ2

2<0.10
σ̂2

12 0.0170 0.0196 0.0176 0.0186 0.0189 0.0176 0.0197 0.0181 0.0193 0.0189

From Table 3-2 and Table 3-3, the summaries we drawn are given below.

1. For the balanced data of example 1, the estimates of σ̂2
u1 and σ̂2

1 are equal to each other. The same situation is
applied to σ̂2

11 and σ̂2
12 . In this case, the problem of lost unique estimator should not be considered.

2. The observed MSE of σ̂2
u1 are similar with σ̂2

1 in example 2 which is almost balanced data. In example 4, the
MSE of σ̂2

u1 are smaller than the values in other examples when σ2
2 is small. But it has terrible result if σ2

2 is
large. For the examples 3, 5 and 6, both σ̂2

u1 and σ̂2
11 have a gradually increasing trend as σ2

2 increases. Since

MSE
�

σ̂2
1

�
and MSE

�
σ̂2

12

�
do not depend on σ2

2, their observed MSE stay stationary. The MSE of all four
estimators benefit from the larger n.

3. For fixed σ2
1 = 0.1 and changes σ2

2, both σ̂2
11 and σ̂2

12 have achieved substantially improvement compared with
σ̂2

u1 and σ̂2
1 respectively in terms of MSE.

4. The ‘small’ values ranges of σ2
2 are listed to prefer to σ̂2

u1 and σ̂2
11 compared with σ̂2

1 and σ̂2
12 respectively. The

upper bounds are around from 0.10 to 0.50. So the ‘small’ values range σ2
2 < 0.1 is recommended for applied

to all the examples except example 1.
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3.3 MSE Effects of σ2
1

σ2
2 < 0.1 is recommended as the ’small’ values range to favor σ̂2

u1 and σ̂2
11, based on the analysis in subsection 3.2. It

is easy to see that, the MSE of Henderson’s method 3 and its modified depend on σ2
1. If we choose one value from

σ2
2 < 0.1, there should also have a range of σ2

1 to favor σ̂2
u1 and σ̂2

11. In order to figure out the relationship between
the estimators and σ2

1 in this subsection, we give 10 different values of σ2
1=0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.5, 1, 2, 5

which range from 0.001 to 5. µ = 0 and σ2
e = 0.9 are simulated. σ2

2 = 0.05 is chosen from the ’small’ values range.
The simulation number is 1000. Commonly used methods σ̂2

u1ML and σ̂2
u1REML are considered to compare with the

estimators of Henderson’s method 3 and its modified. The σ̂2
1 and σ̂2

12 are eliminated in example 1 because the
balanced data has the same estimates for Partition I and II. The observed MSE, estimated biases applied are same
as subsection 3.2. Then, the observed MSE for different estimators of σ2

1 are given in Table 3-4. And the estimated
biases for all the examples of different σ2

1 are presented in Table 3-5.

From Table 3-4 and Table 3-5, the summaries we draw are given below.

1. The observed MSE of σ̂2
u1 are lower than σ̂2

1 except in the example 1 and 2. Example 1 is balanced data and
example 2’s imbalance is closed to 1. It is reasonable to see that the estimates are same in example 1 and
similar with each other in example 2. This situation also applied to the MSE comparison between σ̂2

11, and
σ̂2

12. So the condition of ‘small’ value given by σ2
2 = 0.05 is sufficient to confirm us to choose σ̂2

u1 and σ̂2
1 rather

than σ̂2
1 and σ̂2

12. The results also show us that the modified estimator improves unmodified one in terms of
MSE.

2. The MSE of σ̂2
u1ML are smaller than σ̂2

u1REML for each example, though it have serious bias if σ2
1 is large. So,

σ̂2
u1ML performs better than σ̂2

u1REML in terms of MSE. Moreover, the MSE of σ̂2
u1ML are also approximate equal

to σ̂2
11 and they have lower values than the others. Hence, σ̂2

u1ML and σ̂2
11 can be recommended when MSE is

concerned.

3. The biases of σ̂2
11, σ̂2

12 and σ̂2
u1ML increase dramatically, and will have terrible results if σ2

1 is large. Whereas,
the unbiased estimators σ̂2

u1, σ̂2
1 and σ̂2

u1REML are more robust and approximately equal to 0. Then σ̂2
u1REML

and Henderson’s method 3 are recommended if the unbiasedness is the main concern.
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Table 3-4: Observed MSE for estimators of σ2
1 based on 10 different σ2

1,
µ = 0, σ2

2 = 0.05 and σ2
e = 0.9 with N = 1000 simulations

σ2
1

E Es. 0.001 0.01 0.05 0.1 0.15 0.2 0.5 1.0 2.0 5.0
σ̂2

u1 0.1238 0.1250 0.1719 0.2427 0.3205 0.3607 1.1263 3.1653 9.5649 56.0616
1 σ̂2

11 0.0132 0.0128 0.0184 0.0282 0.0395 0.0512 0.2252 0.7693 2.8261 17.4888
σ̂2

u1REML 0.0941 0.0890 0.1351 0.1990 0.2704 0.2997 1.0359 3.0396 9.4204 55.7817
σ̂2

u1ML 0.0175 0.0171 0.0258 0.0404 0.0586 0.0731 0.3109 1.0109 3.4654 20.7649
σ̂2

u1 0.1658 0.1287 0.2179 0.2562 0.4086 0.4303 1.1886 3.2356 10.0367 50.6879
σ̂2

1 0.1699 0.1316 0.2153 0.2568 0.4080 0.4292 1.1969 3.2513 10.0444 50.5883
2 σ̂2

11 0.0177 0.0130 0.0229 0.0298 0.0483 0.0583 0.2227 0.7667 2.9140 16.9085
σ̂2

12 0.0182 0.0133 0.0227 0.0298 0.0483 0.0581 0.2230 0.7680 2.9151 16.9052
σ̂2

u1REML 0.1310 0.0869 0.1728 0.2017 0.3448 0.3707 1.1007 3.1020 9.8299 50.3896
σ̂2

u1ML 0.0258 0.0153 0.0339 0.0420 0.0758 0.0882 0.3144 1.0235 3.6079 19.3853
σ̂2

u1 0.2285 0.1931 0.2795 0.3333 0.4257 0.5784 1.5486 3.1368 9.9593 48.1104
σ̂2

1 0.2397 0.2119 0.2935 0.3481 0.4611 0.5929 1.5282 3.1542 10.2051 48.4232
3 σ̂2

11 0.0243 0.0202 0.0292 0.0368 0.0512 0.0719 0.2515 0.7696 2.8263 16.7087
σ̂2

12 0.0253 0.0220 0.0305 0.0381 0.0545 0.0728 0.2496 0.7686 2.8419 16.7021
σ̂2

u1REML 0.1771 0.1476 0.2190 0.2598 0.3599 0.4822 1.4154 2.9606 9.8117 47.6020
σ̂2

u1ML 0.0340 0.0247 0.0381 0.0493 0.0739 0.1044 0.3842 1.0216 3.5289 18.9133
σ̂2

u1 0.0478 0.0465 0.0702 0.0747 0.1059 0.1335 0.4492 1.3921 4.6656 27.0626
σ̂2

1 0.0710 0.0814 0.1140 0.1372 0.1829 0.2516 0.6670 2.1822 6.9807 34.7800
4 σ̂2

11 0.0077 0.0078 0.0137 0.0165 0.0276 0.0380 0.1646 0.5949 2.1830 13.1927
σ̂2

12 0.0122 0.0139 0.0197 0.0258 0.0390 0.0543 0.1997 0.7115 2.5678 14.8997
σ̂2

u1REML 0.0177 0.0227 0.0460 0.0592 0.0915 0.1108 0.4229 1.5222 4.5663 25.9121
σ̂2

u1ML 0.0050 0.0075 0.0156 0.0216 0.0400 0.0501 0.2177 0.8233 2.5913 14.8623
σ̂2

u1 0.0149 0.0156 0.0256 0.0484 0.0631 0.0957 0.4381 1.3197 4.4046 28.6096
σ̂2

1 0.0174 0.0191 0.0354 0.0578 0.0775 0.1228 0.5881 1.6704 5.4763 38.2848
5 σ̂2

11 0.0032 0.0033 0.0061 0.0129 0.0204 0.0302 0.1665 0.5750 2.1864 13.3664
σ̂2

12 0.0029 0.0033 0.0067 0.0131 0.0213 0.0331 0.1857 0.6303 2.4277 15.1549
σ̂2

u1REML 0.0118 0.0129 0.0189 0.0434 0.0578 0.0988 0.3894 1.2360 4.1832 27.1272
σ̂2

u1ML 0.0035 0.0042 0.0068 0.0175 0.0273 0.0454 0.2088 0.6882 2.4131 14.8074
σ̂2

u1 0.0248 0.0284 0.0377 0.0529 0.0721 0.0956 0.3129 0.9883 3.3501 20.3179
σ̂2

1 0.0272 0.0253 0.0380 0.0583 0.0758 0.1070 0.3227 1.0370 3.4599 21.6717
6 σ̂2

11 0.0061 0.0073 0.0101 0.0166 0.0245 0.0350 0.1407 0.4907 1.8164 10.7648
σ̂2

12 0.0087 0.0080 0.0122 0.0198 0.0276 0.0399 0.1482 0.5039 1.8648 11.0945
σ̂2

u1REML 0.0119 0.0117 0.0203 0.0392 0.0514 0.0735 0.2815 0.9111 3.1506 18.7353
σ̂2

u1ML 0.0048 0.0048 0.0090 0.0196 0.0288 0.0429 0.1781 0.5855 2.0512 11.9087
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Table 3-5: Estimated Biases for estimators of σ2
1 based on 10 different σ2

1, µ = 0,
σ2

2 = 0.05 and σ2
e = 0.9 with N = 1000 simulations

σ2
1

E Es. 0.001 0.01 0.05 0.1 0.15 0.2 0.5 1.0 2.0 5.0
σ̂2

u1 0.0168 -0.0105 -0.0133 -0.0320 -0.0031 0.0369 -0.0012 -0.0141 -0.0702 -0.2245
1 σ̂2

11 0.0257 0.0112 -0.0164 -0.0553 -0.0796 -0.1004 -0.3125 -0.6499 -1.3351 -3.3860
σ̂2

u1REML 0.1290 0.1109 0.1021 0.0796 0.1013 0.1300 0.0814 0.0541 -0.0115 -0.1802
σ̂2

u1ML 0.0438 0.0317 0.0043 -0.0328 -0.0505 -0.0630 -0.2467 -0.5142 -1.0530 -2.6414
σ̂2

u1 0.0047 -0.0208 0.0178 0.0050 0.0396 -0.0283 -0.0110 -0.0100 0.0078 0.3624
σ̂2

1 0.0056 -0.0220 0.0188 0.0051 0.0421 -0.0278 -0.0119 -0.0059 0.0029 0.3662
2 σ̂2

11 0.0233 0.0090 -0.0047 -0.0420 -0.0643 -0.1198 -0.3140 -0.6476 -1.3079 -3.1896
σ̂2

12 0.0237 0.0086 -0.0043 -0.0419 -0.0634 -0.1196 -0.3142 -0.6462 -1.3094 -3.1882
σ̂2

u1REML 0.1389 0.1087 0.1411 0.1243 0.1452 0.0820 0.0746 0.0650 0.0622 0.4129
σ̂2

u1ML 0.0493 0.0284 0.0194 -0.0156 -0.0325 -0.0901 -0.2573 -0.5117 -1.0236 -2.3457
σ̂2

u1 -0.0087 -0.0282 0.0441 -0.0342 -0.0017 0.0169 0.0288 0.0139 -0.0226 -0.0169
σ̂2

1 -0.0035 -0.0284 0.0390 -0.0355 -0.0011 0.0187 0.0308 0.0217 -0.0264 -0.0142
3 σ̂2

11 0.0254 0.0131 0.0095 -0.0498 -0.0718 -0.0988 -0.2950 -0.6332 -1.3112 -3.3106
σ̂2

12 0.0275 0.0136 0.0083 -0.0496 -0.0710 -0.0977 -0.2939 -0.6301 -1.3119 -3.3091
σ̂2

u1REML 0.1602 0.1453 0.1875 0.1180 0.1359 0.1597 0.1326 0.1177 0.0608 0.0448
σ̂2

u1ML 0.0468 0.0374 0.0313 -0.0301 -0.0569 -0.0705 -0.2496 -0.5153 -1.0501 -2.5660
σ̂2

u1 -0.0025 0.0035 -0.0071 -0.0068 -0.0093 0.0012 0.0012 0.0020 0.0003 0.0930
σ̂2

1 -0.0162 0.0068 -0.0015 -0.0054 -0.0320 -0.0036 0.0108 -0.0004 0.0318 0.1519
4 σ̂2

11 0.0098 0.0097 -0.0185 -0.0417 -0.0687 -0.0872 -0.2409 -0.4966 -1.0026 -2.4809
σ̂2

12 0.0047 0.0088 -0.0176 -0.0486 -0.0886 -0.1058 -0.2750 -0.5710 -1.1404 -2.8384
σ̂2

u1REML 0.0497 0.0539 0.0329 0.0287 0.0060 0.0214 0.0032 -0.0219 -0.0377 0.0552
σ̂2

u1ML 0.0218 0.0189 -0.0102 -0.0324 -0.0645 -0.0751 -0.1946 -0.3794 -0.7295 -1.6692
σ̂2

u1 -0.0007 -0.0047 -0.0017 -0.0058 0.0091 0.0165 -0.0237 -0.0215 -0.0087 -0.0984
σ̂2

1 -0.0021 -0.0068 -0.0011 -0.0023 0.0061 0.0139 -0.0447 -0.0123 0.0010 -0.1157
5 σ̂2

11 0.0045 -0.0016 -0.0212 -0.0499 -0.0691 -0.0912 -0.2680 -0.5301 -1.0496 -2.6685
σ̂2

12 0.0025 -0.0048 -0.0259 -0.0557 -0.0816 -0.1077 -0.3079 -0.5878 -1.1688 -2.9767
σ̂2

u1REML 0.0375 0.0319 0.0296 0.0187 0.0246 0.0351 -0.0174 -0.0175 0.0125 -0.1187
σ̂2

u1ML 0.0163 0.0075 -0.0121 -0.0367 -0.0511 -0.0615 -0.2017 -0.3667 -0.6881 -1.7696
σ̂2

u1 -0.0001 0.0020 -0.0049 0.0003 0.0137 -0.0071 0.0022 -0.0481 0.0465 0.0970
σ̂2

1 -0.0048 -0.0025 0.0005 -0.0044 0.0127 -0.0031 0.0165 -0.0466 0.0319 0.0711
6 σ̂2

11 0.0088 0.0065 -0.0130 -0.0326 -0.0440 -0.0775 -0.1970 -0.4318 -0.7952 -2.0115
σ̂2

12 0.0047 0.0021 -0.0137 -0.0381 -0.0501 -0.0808 -0.2000 -0.4530 -0.8428 -2.1236
σ̂2

u1REML 0.0422 0.0407 0.0257 0.0170 0.0311 0.0113 0.0004 -0.0430 0.0332 0.0614
σ̂2

u1ML 0.0223 0.0181 -0.0056 -0.0271 -0.0322 -0.0616 -0.1500 -0.3051 -0.4986 -1.2226

Probability of Getting Negative Estimate As a limitation for Henderson’s method 3, there exist negative esti-
mates. The formula of observed probability of getting negative estimate is given in APPENDIX C. Since the iterative
algorithms are used to estimate σ̂2

u1ML and σ̂2
u1REML, the negative estimate condition must be taken into account in

the computer programs for solving their equations; see Searle, Casella and McCulloch (1992). The probability of
getting negative estimate by ML and REML are equal to 0 and need not to be considered. The reason of eliminating
σ̂2

1 and σ̂2
12 in the example 1 is that Henderson’s method 3 and its modified do not have the problem of lost unique

estimators. The observed probability of getting negative estimate of σ̂2
u1, σ̂2

1, σ̂2
11 and σ̂2

12 are listed in Table 3-6.
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Table 3-6: The observed Probability of getting negative estimate for estimation of σ2
1

based on 10 different σ2
1, µ=0, σ2

2=0.05 and σ2
e =0.9 with N = 1000 simulations

σ2
1

Ex. Es. 0.001 0.01 0.05 0.1 0.15 0.2 0.5 1.0 2.0 5.0
1 σ̂2

u1 0.646 0.643 0.580 0.569 0.511 0.489 0.423 0.324 0.218 0.169
σ̂2

11 0.569 0.567 0.519 0.487 0.440 0.428 0.364 0.269 0.193 0.151
σ̂2

u1 0.646 0.637 0.582 0.580 0.524 0.488 0.392 0.323 0.251 0.158
2 σ̂2

1 0.635 0.645 0.590 0.574 0.531 0.491 0.396 0.324 0.247 0.159
σ̂2

11 0.569 0.575 0.512 0.507 0.466 0.429 0.343 0.279 0.207 0.140
σ̂2

12 0.569 0.568 0.517 0.500 0.460 0.435 0.346 0.285 0.207 0.139
σ̂2

u1 0.640 0.619 0.600 0.592 0.545 0.522 0.404 0.361 0.275 0.188
3 σ̂2

1 0.641 0.626 0.603 0.586 0.545 0.530 0.399 0.353 0.272 0.195
σ̂2

11 0.556 0.542 0.516 0.523 0.488 0.461 0.354 0.304 0.224 0.161
σ̂2

12 0.566 0.549 0.539 0.515 0.480 0.458 0.339 0.309 0.237 0.166
σ̂2

u1 0.539 0.515 0.433 0.385 0.365 0.323 0.202 0.127 0.064 0.024
4 σ̂2

1 0.602 0.579 0.545 0.499 0.476 0.421 0.300 0.220 0.130 0.065
σ̂2

11 0.541 0.521 0.422 0.374 0.344 0.298 0.186 0.121 0.059 0.025
σ̂2

12 0.564 0.539 0.501 0.470 0.447 0.386 0.279 0.201 0.120 0.058
σ̂2

u1 0.602 0.586 0.469 0.430 0.363 0.266 0.184 0.099 0.047 0.016
5 σ̂2

1 0.644 0.609 0.508 0.450 0.392 0.320 0.234 0.140 0.062 0.019
σ̂2

11 0.570 0.545 0.446 0.394 0.340 0.240 0.173 0.089 0.038 0.011
σ̂2

12 0.618 0.578 0.477 0.425 0.370 0.301 0.215 0.127 0.056 0.018
σ̂2

u1 0.538 0.497 0.425 0.376 0.316 0.233 0.121 0.066 0.022 0.006
6 σ̂2

1 0.603 0.569 0.476 0.407 0.341 0.288 0.159 0.080 0.034 0.009
σ̂2

11 0.537 0.502 0.398 0.337 0.294 0.212 0.102 0.052 0.018 0.005
σ̂2

12 0.570 0.537 0.446 0.370 0.313 0.261 0.146 0.073 0.033 0.007

Results in table 3-6 show that the values of probability of getting negative estimate of σ̂2
u1 and σ̂2

11 are similar
with each other as well as σ̂2

11 and σ̂2
12 in different examples. It is reasonable to have that the negative probability

two Partitions of Henderson’s method 3 and its modified decrease for larger σ2
1. The modified estimators σ̂2

11 and
σ̂2

12 have smaller values than unmodified ones. That means modified estimator perform better than unmodified one
when the negative probability is concerned.

3.4 The Ratio σ2
2/σ2

1 Test

The ’small’ values range of σ2
2 < 0.1 is obtained from the MSE comparison in subsection 3.2 and 3.3. Generally, the

true values of variance components are varied for a large range. Here we need to extend this ‘small’ values range to
the ratio σ2

2/σ2
1 with the aim of wide application. The range of ratio σ2

2/σ2
1 < 1.0 should be recommended based on

the calculation from σ2
2 < 0.1 and σ2

1 = 0.1 in subsection 3.2. Let us choose one value σ2
2/σ2

1 = 0.8 in the ratio range.
And for the same ratio, there exist different values of σ2

2 and σ2
1. Here we give the true values for simulation σ2

2=0.8,
4, 12, 24, 40, 80 and σ2

1=1, 5, 15, 50, 100. Hence, the range of σ2
2 and σ2

1 could cover many true values of variance
components in real experiments. The other parameter is µ = 0 and σ2

e = 0.9. Examples 2 and 5 are used to test the
ratio based on N = 1000 simulations. The observed MSE of Henderson’s method 3 and its modified are given in
Table 3-7.
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3.5 MSE Effects of n 3 MONTE CARLO COMPARISON AND SIMULATIONS

Table 3-7: The observed MSE for estimation of σ2
1 based on σ2

2/σ2
1 = 0.8,

µ = 0, σ2
e = 0.9 with N = 1000 simulations

σ2
2/σ2

1 = 0.8
Ex. Es 0.8, 1 4, 5 12, 15 24, 30 40, 50 80, 100

σ̂2
u1 2.8979 57.3405 423.4799 995.3098 4847.170 19240.168

2 σ̂2
1 2.9417 56.0465 420.1413 1015.9780 4848.737 19415.408

σ̂2
11 0.7336 17.3185 145.6219 383.3311 1657.436 6583.363

σ̂2
12 0.7399 17.2168 145.4236 384.9611 1653.197 6612.680

σ̂2
u1 1.7133 34.8602 267.2678 1204.2242 3348.202 12375.354

5 σ̂2
1 1.7311 36.6264 274.2066 1221.0254 3351.043 13188.749

σ̂2
11 0.6093 13.5307 113.3753 475.6935 1356.286 5197.689

σ̂2
12 0.6408 14.9743 125.7473 520.3050 1447.766 5734.068

Table 3-7 shows us that for example 2, the MSE of σ̂2
u1 are larger than σ̂2

1 sometimes as well as the comparison
between σ̂2

11 and σ̂2
12. Then, the ratio range is not stable when n is low which will be discussed in section 6. Moreover,

the observed MSE of σ̂2
u1 are smaller than σ̂2

1 with ratio σ2
2/σ2

1 = 0.8 in example 5. The MSE values of σ̂2
11 are also

lower than σ̂2
1. That means if n is large the ‘small’ range values of can be extended to the ratio σ2

2/σ2
1 < 1.0. If the

MSE is the main interest, the modified estimator is favored σ̂2
11 over the other three estimators in this case.

3.5 MSE Effects of n

As described in subsection 3.2 and 3.3, all the estimators benefit from the larger n. The main task of this part is to
figure out effects of n to the MSE of different estimators. σ2

1 = 1, σ2
2 = 0.05 and σ2

e = 0.9, µ = 0, are used as simulated
values. The MSE of σ̂2

u1, σ̂2
11 and σ̂2

u1ML are calculated here. The other three estimators are eliminated because of the
MSE comparison in subsection 3.3. Example 5 is chosen as the basic experiment. 4 different observations n=30, 150,
450, 900 are applied here based on N = 1000 simulations. The observed MSE results with different n are drawn in
Figure 3-2.
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4 SPLIT-PLOT DESIGN EXPERIMENT APPLICATION
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Figure 3-2: Observed MSE for different n=30, 150, 450, 900 based on
σ2

2=0.05, σ2
1=1,σ2

e =0.9 and µ=0 with N=1000 simulations.
The 1 with solid line is σ̂2

u1, the 2 with dashed line is σ̂2
11 and 3 is σ̂2

u1ML

Figure 3-2 shows us that the gaps between different estimators become smaller as the increases of n. The MSE of
σ̂2

u1 are more sensitive for the changing of n than σ̂2
11 and σ̂2

u1ML. If n is large enough, then the MSE of the estimators
are approximately equal to each other. So in this case, the unbiased estimators are preferred to the biased ones.

Conclusion 4 σ̂2
u1 and σ̂2

11 are preferred to σ̂2
1 and σ̂2

12 respectively in terms of MSE, based on the condition that ‘small’
values range of σ2

2 < 0.1. The imbalance of data and n also have effects to the range of ‘small’ values. We also extend the
‘small’ values of σ2

2 to the ratio σ2
2/σ2

1 < 1.0 with the aim of wide application. Although the modified σ̂2
11 do have big biases

if σ2
2 is large, its MSE is smaller than other estimators for all the examples. If σ2

2 is larger enough and exceeds the boudary
value, then σ̂2

11 can be replaced by σ̂2
12. Moreover, since its unbiasedness, σ̂2

u1REML is more robust than σ̂2
u1ML. But there is no

reason to choose σ̂2
u1REML in terms of MSE. This same result can also be found in Kelly and Mathew (1994). σ̂2

u1ML and σ̂2
11

both are recommended for small when MSE is concerned. However, because of its noniterative calculation, σ̂2
11 is chosen as an

appropriate estimator compared with σ̂2
u1ML.

4 Split-Plot Design Experiment Application

In this section, the commonly used mixed model of split-plot design is implemented with the estimators in our
previous discussion. Ramon (1996) introduce the split-plot design theory. The split-plot design involves often two
experimental factors, A and B which are divided into the main plots and subplots respectively. Levels of A are
randomly assigned to whole plots, and levels of B are randomly assigned to split plots within each whole plot. The
design provides more precise information about B than about A, and it often arises when A can be applied only to
large experiments units. An example from Ramon (1996) is where A represents irrigation levels for large plots of
land and B represents different crop varieties planted in each large plot.
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4.1 Data Description 4 SPLIT-PLOT DESIGN EXPERIMENT APPLICATION

4.1 Data Description

The data given in Ramon (1996) is obtained from a balanced split-plot design with the whole plots arranged in a
randomized complete-block design. The whole-plot factor is denoted by A, and the subplot factor is B. The A, B
and Block are classification variables. Table 4-1 gives the data for application.

Figure 4-1: Split-Plot design data from Ramon(1996)

No. Block A B Y No. Block A B Y
1 1 1 1 56 13 1 2 1 41
2 1 2 1 50 14 1 2 2 36
3 1 3 1 39 15 1 2 3 35
4 2 1 1 30 16 2 2 1 25
5 2 2 1 36 17 2 2 2 28
6 2 3 1 33 18 2 2 3 30
7 3 1 1 32 19 3 2 1 24
8 3 2 1 31 20 3 2 2 27
9 3 3 1 15 21 3 2 3 19
10 4 1 1 30 22 4 2 1 25
11 4 2 1 35 23 4 2 2 30
12 4 3 1 17 24 4 2 3 18

The observation n = 24. There are 3 levels in A, 2 levels in B and 4 levels in Block. Let Ȳ = 30.9167 denote the
mean of response Y, and D (Y) = 93.5580 denote sample variance. The distribution of response is drawn as Figure
4-1.

Distribuion of Y

Y

de
ns

tiy

20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Y
normal distribution

Figure 4-1: The solid line denotes the distribution of response Y,
the dashed line is normal distribution with N (Ȳ, D (Y))
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4.2 Modelling and Application 6 DISCUSSION

Figure 4-1 shows us that the distribution of response vector Y are approximately to normal distribution with
MVN (Ȳ, D (Y)). That satisfys the assumptions of model (1) given in subsection 2.1.

4.2 Modelling and Application

Ramon (1996) suggested us to construct a two-way mixed model which is the same as model (1). The variables of
A, B and A*B are seen as fixed effects, A*Block and Block are seen as random effects. Since A*Block has both the
effects of A and Block, and the levels of A are randomly assigned to the main plots ,here the variance component
of A*Block is the same as σ2

1. Let u1 and u2 denote A*Block and Block respectively. The model (1) applied to data in
Table 4-1 is described below.

The design matrix for fixed effects contains 24 columns and 6 rows. Here, p = 12 and q = 4 are the levels of
random effects u1 and u2 which are distributed as MVN

�
0, σ2

1 I12
�
, MVN

�
0, σ2

2 I4
�

based on the assumption. Then
the design matrix for random effects, Z1(24�12) and Z1(24�4) is obtained from the data6.

The results of σ̂2
u1, σ̂2

11, σ̂2
u1ML and σ̂2

u1REML in this case are given in Table 4-2.

Table 4-2:The estimates results with split-plots design application

σ̂2
u1 σ̂2

11 σ̂2
u1ML σ̂2

u1REML
estimate -155695.5 37.15833 8.946263 15.3819

From Table 4-2, we can see that the estimate of σ̂2
u1 is negative and would cause terrible problem. The value of

σ̂2
u1ML is not close to σ̂2

u1REML. σ̂2
11 has achieved improvement for σ̂2

u1.

5 Conclusion

The aim of our article is to evaluate the performance of modified Henderson’s method 3 developed by Al-Sarraj
and Rosen (2007) by means of simulations. The model we used is a two-way linear mixed model satisfying several
assumptions. Six examples from unbalanced to balanced data are considered. Several criteria MSE, bias and prob-
ability of getting negative estimate are used to show the performance of the modified estimator together with the
unmodified one, ML and REML.

For the unbalanced data, in order to solve the problem of no unique estimators, the estimation of σ2
1 by Hen-

derson’s method 3 are divided into Partition I and Partition II. The modified Henderson’s method 3 is also divided
into two Partitions. Hence we choose one of the Partitions with smaller MSE as an appropriate estimator. From the
simulation results in section 3, the two Partitions are equal to each other. The same results also exist in the modified
estimators. A ’small’ values range of σ2

2 < 0.1 is obtained from the MSE comparison between the two Partitions.
Then, we recommend a ratio range of σ2

2/σ2
1 < 1.0 to decide which Partition is preferred. This ratio range can ap-

ply to both modified and unmodified Henderson’ method 3 when n is large. Hence, The modified estimator have
achieved great improvement compared with unmodified one in terms of MSE. Moreover, If the negative probability
is concerned, then the modified estimator also performs better than unmodified one. However, if bias is considered,
the modified Henderson’s method 3 and σ̂2

u1ML is not suggested. The MSE of is close to the mofidified estimator
sometimes. σ̂2

u1ML can also recommended if the MSE is concerned.
From the simulation analysis and split-plot design experiment application, we have the conclusion that the

modified estimators can be considered as an appropriate estimator if the MSE and probability of getting negative
estimate are concerned. Furthermore, with the explicit expression and noniterative computation, modified estima-
tor is also computationally faster than ML and REML and performs better in terms of MSE sometimes.

6 Discussion

As Swallow and Searle (1978) illustrated, we can not choose a set of examples which could cover all possible un-
balancedness. The usual mind to select examples is from slightly unbalanced to badly unbalanced. Here, the
motivation of Al-Sarraj and Rosen (2007) to select the examples is to compare the MSE of Partition I and Partition

6The details to obtain the design matrixes of X, Z1(24�12) and Z1(24�4) are given in APPENDIX C
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II of Henderson’s method 3. All the examples applied are not existing terrible unbalancedness The observation
n for examples 1 to 3 is 8 which can be seen as low number of observations. We have shown that the theoretical
relationship between σ2

2 and the MSE of Partition I. The MSE of Partition I should have a increasing trend for larger
σ2

2 if σ2
1 and σ2

e are fixed. From the simulation results of the examples with n = 8 in Table 3-2 and Table 3-3, the MSE
of Partition I do not have a obviously ascending trend as σ2

2 increasing. However, if n � 21, then this increasing
trend presents obviously. The ratio σ2

2/σ2
1 < 1.0 recommended for wide application also perform bad, if the number

of observation is low. That means when the observation is small, the Henderson’s method 3 and its modified are
limited to apply.

One of the variance components σ2
1 must be seen as the main interest. The core procedure of modified Hender-

son’s method is focused on the estimation for σ2
1. And the constants of σ̂2

11 and σ̂2
12 used to modify are determined

by minimizing the leading terms of MSE
�

σ̂2
u1

�
and MSE

�
σ̂2

1

�
. In real experiments, we have to choose one of the

random effects as the main interest if the modified Henderson’s method 3 is applied to estimate the variance com-
ponents. We can not expect to have the improving estimator for all the variance components. So, when we focus on
all the variance components, it is not suitable to consider modified Henderson’s method 3.

A APPENDICES

APPENDIX A

1. Y = 18µ+

�
14 0
0 14

�
u1 +

0BB@
12 0
0 12
12 0
0 12

1CCA u2 + e, n = 8, p = 2, and q = 2

2. Y = 18µ+

�
15 0
0 13

�
u1 +

0BB@
12 0
0 13
11 0
0 12

1CCA u2 + e, n = 8, p = 2, and q = 2

3. Y = 18µ+

�
16 0
0 12

�
u1 +

0BB@
14 0
0 12
11 0
0 11

1CCA u2 + e, n = 8, p = 2, and q = 2

4. Y = 121µ+

0@ 15 0 0
0 19 0
0 0 17

1A u1 +

0BBBBBB@
12 0 0
0 13 0
0 11 0
0 0 18
14 0 0
0 13 0

1CCCCCCA u2 + e, n = 21, p = 3,and q = 3

5. Y = 130µ+

0@ 110 0 0
0 115 0
0 0 15

1A u1 +

0BBBBBB@
15 0 0
0 15 0

110 0 0
0 15 0
0 12 0
0 0 13

1CCCCCCA u2 + e with n = 30, p = 3, and q = 3

6. Y = 130µ+

0BB@
17 0 0 0
0 112 0 0
0 0 16 0
0 0 0 15

1CCA u1 +

0BBBBBBBB@

14 0 0
0 0 13
0 110 0
0 0 12
12 0 0
0 14 0
15 0 0

1CCCCCCCCA
u2 + e, n = 30, p = 4, and q = 3

24



A APPENDICES

APPENDIX B

Three definitions about the bias and MSE are given by Wackerly, Mendenhall and Scheaffer (2002).

Definition 5 let θ̂ be a point estimator for θ.Then θ̂ is an unbiased estimator if E
�
θ̂
�
= θ. otherwise, θ̂ is said to be biased.

Definition 6 The bias of a point estimator θ̂ is given by B
�
θ̂
�
= E

�
θ̂
�
� θ.

Definition 7 The mean square error of a estimator is θ̂ the expected value of
�
θ̂ � θ

�2
:

MSE
�
θ̂
�
= E

�
θ̂ � θ

�2

If the B
�
θ̂
�

denotes the bias, it can be shown that MSE
�
θ̂
�
= D

�
θ̂
�
+ B

�
θ̂
�2 where D

�
θ̂
�

denotes sample variance of θ̂.

Let us define σ̂2 as the estimator to estimate the true value σ2. The expectation and variance of σ̂2 are denoted
as E

�
σ̂2
�

and D
�

σ̂2
�

respectively. We denote a sample set of data as σ̂2 =
�

σ̂2
1, σ̂2

2, . . . σ̂2
N

�
with i = 1, 2, . . . , N.

Then the observed sample mean of σ̂2 is given:

mean
�

σ̂2
�
=

1
N ∑ σ̂2

i

which replaces with the E
�

σ̂2
�

.

The observed sample variance denoted as S2
�

σ̂2
�

is calculated as:

S2
�

σ̂2
�
=

1
N � 1 ∑

�
σ̂2

i �mean
�

σ̂2
��2

which replaces with D
�

σ̂2
�

.
Moreover, The estimated bias is

Bias
�

σ̂2
�
= mean

�
σ̂2
�
� σ2.

According to the definition, the observed MSE of is:

MSE
�

σ̂2
�
= S2

�
σ̂2
�
+ Bias

�
σ̂2
�2

The observed negative probability used in our article is:

P
�

σ̂2 < 0
�
=

P
N

where P is the numbers of negative estimates.

APPENDIX C

Design matrixes for fixed and random effects in section 4 are given.
X includes 6 columns, Z1 and Z2 have 16 and 4 columns respectively.
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X=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 1 0 1 1 0
1 0 1 1 0 1
1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1
1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1
1 0 0 1 0 0
1 1 0 1 1 0
1 0 1 1 0 1
1 0 0 1 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 0 0 0

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Z1=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

Z2=

0BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1
1 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

APPENDIX D

This reduced model method provided by Kelly and Mathew (1994) is to derive estimators that are invariant with
the changes of the means of Y based on model (1). The σ̂2

1 and σ̂2
12 can also be obtained from this method.

In order to delete the effect of σ2
2 and β, we define a n� t matrix K

0
where t = n� b, b = rank (X) . The matrix

K
0

satisfies K
0
K = I and K

0
(X, Z2) = 0. The columns of K

0
are orthogonal vectors with each other and orthogonal

to the columns of (X, Z2). Let us define u = K
0
Y, then a new model is given:

u = U1u1 + K
0
e (D.1)

where U1 = K
0
Z1.

According to the assumptions given in the section 2.1,

E (u) = 0

D (u) = σ2
1V�1 + σ2

e It

where V�1 = U
0
1U1.

The ANOVA method is applied to estimate σ2
1 and σ2

e with the new model (D.1). So the sums of squares SSR
due to u1 is

SSRu1 = u
0
Pu (D.2)

where P = U1

�
U
0
1U1

��
U and is also a a idempotent matrix.

The sum of squares due to e is
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SSE = u
0
(I � P) u (D.3)

Based on the the properties of quadratic forms, we equate SSRu1 and SSE to their expectation.

E
�

SSRu1
SSE

�
= T

�
σ2

1
σ2

2

�
(D.4)

where T =
�

tr
�

PV�1
�

tr (P)
0 tr (I � P)

�
.

Then solving the equation (D.4), the solution of variance components is:�
σ̂2

1
σ̂2

1

�
= T�1

 
u
0
Pu

u
0
(I � P) u

!
(D.5)

So the expression of σ̂2
1 is :

σ̂2
1 =

u
0
Pu

tr
�

PV�1
� � tr (P) u

0
(I � P) u

tr
�

PV�1
�

tr (I � P)
(D.6)

Therefore, σ̂2
1 and σ̂2

12 can also be obtained from the reduced model method.
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R code for estimation

### Henderson method’s and its modified
HendersonEst<-function(Y,X,Z1,Z2) {
#############################################
# This function calculates estimates of Henderson 3 and its modifiedof partition I and Partition II respectively.
# The model used is mixed linear model with two random effects and iid residuals.
# Code written by Lars Ronnegard 2008-07-29, modified by Weigang Qie.
# Input:
# Y = response vector
# X = design matrix for fixed effects
# Z1 = incidence matrix for first random effect
# Z2 = incidence matrix for second random effect
#############################################
library(MASS)
n<-length(Y)
#############################################
X1<-cbind(X,Z1)
X2<-cbind(X1,Z2)
PX<-X%*%ginv(t(X)%*%X)%*%t(X)
PX1<-X1%*%ginv(t(X1)%*%X1)%*%t(X1)
PX2<-X2%*%ginv(t(X2)%*%X2)%*%t(X2)
I<-diag(1,length(Y))
A<-PX1-PX
B<-PX2-PX1
C<-I-PX2
V1<-Z1%*%t(Z1)
V2<-Z2%*%t(Z2)
a<-sum(diag(A%*%V1))
b<-sum(diag(B%*%V2))
c<-sum(diag(C))
d<-sum(diag(A%*%V2))
e<-sum(diag(B))
#Added f to equations
f<-sum(diag(A))
#Used lower case k since it is a scalar
k<-d*e-f*b
##########################################
######### nonmodified Henderson III ##############
##########################################
##Partition I
sigma1<-round(1/a*(t(Y)%*%A%*%Y-d/b*(t(Y)%*%B%*%Y)+k/(b*c)*(t(Y)%*%C%*%Y)),4)
##Partition II
X3<- cbind(X,Z2)
PX3<- X3%*%ginv(t(X3)%*%X3)%*%t(X3)
E<- PX2-PX3
g<- sum(diag(E%*%V1))
l<- sum(diag(E))
sigma12<-round(t(Y)%*%E%*%Y/g-l*t(Y)%*%C%*%Y/(c*g),4)
sigma1hat<-cbind(sigma1,sigma12)
#########################################
######### modified Henderson III #################
#########################################
##Partition I
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c1<-1/(2/(a^2)*sum(diag(A%*%V1%*%A%*%V1))+1)
d1<-1/(2/(b^2)*sum(diag(B%*%V2%*%B%*%V2))+1)
d2<-(d/b*d1*sum(diag(B))-sum(diag(A)))/((k/b)*(2/c+1))
##############
modsigma1<-c1/a*(t(Y)%*%A%*%Y-d/b*d1*(t(Y)%*%B%*%Y)+k/(b*c)*d2*(t(Y)%*%C%*%Y))
##Partition II
c2<- g^2/(2*sum(diag(E%*%V1%*%E%*%V1))+g^2)
e1<-c/(2+c)
#############
modsigma12<-c2*t(Y)%*%E%*%Y/g-c2*e1*l*t(Y)%*%C%*%Y/(c*g)
#############
modsigma1hat<-cbind(modsigma1,modsigma12)
#############
r<-cbind(sigma1hat,modsigma1hat)
r
}
#####################################
######## Simulation function ################
#####################################
simu2<-function(Z1,Z2,X,mu,n,a,b,sigma1,sigma2,sigmae){
###Calculate MSE of Partition I and PartitionII for nonmodified and modified Henderson
###Calculate MSE of ML and REML
Re<-M<-h<-h2<-w<-m<-numeric(100)
i<-1
while(i<=100){
b1<-as.matrix(c(1:a))
b2<-as.matrix(c(1:b))
c1<-as.factor(c(Z1%*%b1))
c2<-as.factor(c(Z2%*%b2))
e<-as.matrix(rnorm(n,0,sqrt(sigmae)))
u1<-as.matrix(rnorm(a,0,sqrt(sigma1)))
u2<-as.matrix(rnorm(b,0,sqrt(sigma2)))
Y<- X*mu+Z1%*%u1+Z2%*%u2+e
lm2<-lmer(Y~1+(1jc1)+(1jc2),REML=FALSE)
lm1<-lmer(Y~1+(1jc1)+(1jc2))
z<-VarCorr(summary(lm1))
x<-VarCorr(summary(lm2))
Re[i]<-as.numeric(as.matrix(z[1]))
M[i]<-as.numeric(as.matrix(x[1]))
s<-HendersonEst(Y,X,Z1,Z2)
h[i]<-s[1]
h2[i]<-s[2]
m[i]<-s[3]
w[i]<-s[4]
i<-i+1
}
M1<-round(var(h)+(mean(h)-sigma1)^2,4)
M2<-round(var(h2)+(mean(h2)-sigma1)^2,4)
Mo1<-round(var(m)+(mean(m)-sigma1)^2,4)
Mo2<-round(var(w)+(mean(w)-sigma1)^2,4)
REML<-round(var(Re)+(mean(Re)-sigma1)^2,4)
ML<-round(var(M)+(mean(M)-sigma1)^2,4)
r<-rbind(M1,M2,Mo1,Mo2,REML,ML)
r
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}
###########################
####### Data application ########
##########################
## Data description
y<-c(56,50,39,30,36,33,32,31,15,30,35,17,41,36,35,25,28,30,24,27,19,25,30,18)
hist(y,freq=F,xlab=’Y’,ylab=’denstiy’,main=’Distribuion of Y’)
lines(density(y),lwd=2)
min(y)
max(y)
mean(y)
var(y)
r<-seq(15,56,len=24)
d<-dnorm(r,mean(y),sqrt(var(y)))
lines(r,d,lty=2,lwd=2)
legend(40,0.049,c(expression(Y),’normal distribution’),lty=1:2,lwd=c(2,1))
qqnorm(y,main=’Normal Q-Q Plot of Y’)
qqline(y)
## Estimation
######################
HendersonEst(Y,X,Z1,Z2)
#####################
library(lme4)
lm<-lmer(y~a+b+a*b+(1jt)+(1jblock))
lm2<-lmer(y~a+b+a*b+(1jt)+(1jblock),REML=FALSE)
REML<-as.numeric(as.matrix(VarCorr(summary(lm))[1]))
r<-VarCorr(summary(lm2))
ML<-as.numeric(as.matrix(VarCorr(summary(lm2))[1]))
#####################
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