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Abstract 
Autoregressive model is widely used in economic data analysis. This thesis is 

aiming at finding the best model for modeling and forecasting monthly electricity 
price of Sweden among different autoregressive models. To fit data from Nord Pool 
Spot, models such as AR model (Hamilton 1994), periodic AR model (Franses and 
Paap 1994), periodic VAR model (Lütkepohl 2005) and SAR model (Brockwell and 
Davis 2002) are applied. Based on results of above models, residuals are tested 
whether they are white noises. Models whose residuals are white noises are used in 
forecasting price of one year. Comparing mean square errors of forecast results, the 
best model is periodic VAR model. 

 
Key words: Autoregressive model, periodic autoregressive model, monthly 

electricity price of Sweden. 



 

Contents 
1. Introduction............................................................................... 1 
2. Data............................................................................................ 2 

2.1 Run sequence plot ............................................................................... 2 
2.2 Summary statistics ............................................................................... 3 

3. Models ....................................................................................... 4 
3.1 AR model.............................................................................................. 4 
3.2 PAR model ........................................................................................... 5 

3.2.1 Model form .............................................................................................5 
3.2.2 Choice on order p....................................................................................6 

3.3 Periodic VAR model ............................................................................. 7 
3.3.1 Bivariate Granger causality tests ............................................................7 
3.3.2 Modeling .................................................................................................9 

3.4 SAR model ......................................................................................... 10 
4. Results..................................................................................... 11 

4.1 Coefficients of models........................................................................ 11 
4.2 Box-Pierce tests ................................................................................. 12 

5. Forecasting ............................................................................. 13 
6. Conclusion.............................................................................. 15 
Appendices ................................................................................. 17 

1. Yule-Walker Estimation (Brockwell and Davis 2002) ........................... 17 
2. Part of codes ........................................................................................ 17 

References .................................................................................. 20 



Modeling and forecasting monthly electricity price of Sweden with periodic autoregressive models                             1 

1. Introduction 
Autoregressive model is widely used in economic data. It includes AR model 

(Hamilton 1994), periodic AR model (Franses and Paap 1994), periodic VAR model 
(Lütkepohl 2005) and SAR model (Brockwell and Davis 2002). In this thesis, 
different autoregressive models are applied to model monthly electricity price of 
Sweden. The aim is to find the best model among these four models. 

In history, Denise and Jeremy (1989) have used autoregressive models including 
AR model, periodic AR model and periodic VAR model on seasonal U.K. 
consumption. Philip and Richard (1994) have used periodic AR model on several 
quarterly U.K. macroeconomic data. In this thesis, SAR model is added for 
comparison with the other models. 

In this thesis, data section, based on plots of data and some summary statistics, 
the features of the data is summarized. In models section, for each model, the first 
thing is choice of the proper order p. It is decided based on Akaike information 
criterion, Bayesian information criterion or the plot of partial autocorrelation 
functions. With the order p chosen, the next step is to test if the model is applicable. 
Presence of periodicity is tested for periodic AR model. Bivariate Granger causality 
tests (Lütkepohl 2005) are used for periodic VAR model. Finally, to estimate the 
coefficients of the models, Yule-Walker estimation (Brockwell and Davis 2002) and 
maximum likelihood estimation are applied to AR model, periodic AR model and 
SAR model. For periodic VAR model, ordinary least squares are directly used. In 
results section, Box–Pierce test (Hamilton 1994) is used upon residuals of each model 
to find whether they are white noises. Only models whose residuals are white noises 
can be used for forecasting. In forecasting section, based on data from January in 
2000 to February in 2010, monthly electricity prices of March 2010 to February 2011 
are forecasted. Mean square errors are calculated as a statistic to find the best model. 
The best model is periodic VAR model. In conclusion section, the thesis is 
summarized and some possible improvements are put out. 

The outline of the thesis is as follows. Section 2 is data section. Section 3 is 
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models section which estimates the coefficients of models. Section 4 is results section 
and selects the models can be used for forecasting. Section 5 is forecast section to find 
the best model. Section 6 is conclusion section. 

2. Data 
This thesis uses price data from Nord Pool which is a multinational power 

market consisting of Norway, Sweden, and Denmark. The dataset from Nord Pool 
Spot has one variable, monthly price. It includes monthly price of Sweden Denmark 
and Norway from January in 2000 to February in 2011. When a country has different 
prices in several areas, the mean is calculated as the price of the country. 

2.1 Run sequence plot 

 
Figure1. Plot of monthly electricity price in three countries 

 

Observing figure 1, the monthly electricity prices of three countries have similar 
trend. The three countries may have relationship with each other, so it is possible to 
consider vector autoregressive when modeling the data. To find the details of monthly 
electricity price in Sweden, figure 2 is plotted. 
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Figure2. Plot of monthly electricity price in Sweden 

 

Note: Y-axis stands for the price of Sweden, X-axis stands for 12 months 
in a year. For the same month in the different year, price is increasing. 
 
Observing figure 2, price of Sweden usually decreases from January to the 

middle of the year, then increases to the end of the year. The price for the same month 
in different year is increasing. For the similar shape of lines, the seasonality should be 
considered for modeling. 

2.2 Summary statistics 
Table1. Summary statistics of three countries 

 Sweden Denmark Norway 
Mean 35.27 35.87 33.97 
Median 31.70 34.24 30.78 
Maximum 94.00 77.67 84.32 
Minimum 7.91 10.28 5.94 
Note: The unit is sek/MWh, MWh is megawatt hour. 

 

Observing table 1, prices of Sweden and Denmark are higher than Norway in 
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mean and median. According to introduction of Nord Pool, electricity sector of 
Norway relies mostly on water power; that of Denmark relies mostly on fossil energy 
and new renewable energy; that of Sweden relies on water power and nuclear power. 
Comparing three countries, Norway has the lowest cost of electricity, so its price is 
lower than the other two countries. 

3. Models 
3.1 AR model 

AR model (Hamilton 1994) is the most ordinary autoregressive model, it is 
expressed as, 

2
1 1 ... , ~ (0, ) which is notated as AR(p),                (1)

where t {p+1,p+2,...}, p Z ,   is cofficient, is price at month t.
t t p t p t t

i t

y y y WN
y

φ φ ε ε σ

φ

− −

+

= + + +  

∈ ∈   

 

To model data with AR(p), the first step is to choose the proper order p. Partial 
autocorrelation functions (Hamilton 1994), which are to check the dependence 
between price at month t and month (t-k) removing the effects of variables between 
them, are plotted in figure 3. 

 
Figure3. Plot of partial autocorrelation function 

 

Observing figure 3, partial autocorrelation between price at month t and (t-2) is 
not zero. When lag is bigger than 2, the partial autocorrelation can be regarded as zero 
except that lag is 11. When lag is 11, the pattern of partial autocorrelations has a spike 
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in the figure 3. It shows the seasonality of the data. For AR(p), seasonality is not 
considered, it will be discussed in the next three models. Without considering the 
spike at lag 11, p is chosen as 2, it means that the price at month t just depends on the 
price at month (t-1) and (t-2). 

When order p is 2, the model can be given as 
2

1 1 2 2

1 2

, ~ (0, )                                                                  (2)
where t {3,4,...}, ,  is cofficient, is price at month t.
t t t t t

t

y y y WN
y

φ φ ε ε σ

φ φ
− −= + +  

∈   

 

Apply Yule-Walker estimation (Brockwell and Davis 2002) to the monthly prices 
of Sweden from January in 2000 to February in 2011 to get the coefficients of 
equation (2). In AR(p), seasonality is not included into the model. To improve the 
model, periodic AR model is used. 

3.2 PAR model 

Periodic models are one kind of autoregressive models which allow the 
parameters varying in different seasons. In this way, it includes seasonality of data 
into modeling. For the monthly electricity price of Sweden, it shows some seasonality 
from the analysis of figure 3 in 3.1 and the seasonal period is chosen as 12 because it 
is monthly data. 

3.2.1 Model form 

The periodic model is given as, 
12

, 1, 1 , ,
1

2
1, ,

0 is not in the month i        ( ... ) , .              (3)1 is in the month i
       ~ (0, ),  where ,...,  are coefficients at i-th month in a year, 

t i t i t p i t p t i t
i

t i p i

ty D y y D t
WN

φ φ ε

ε σ φ φ

− −
=

 
= + + + = 

 ∑

i {1,...,12},and  is price at month t.ty∈

 

Since a dummy variable D is used in the equation (3), the periodic AR model is 
not possible to calculate in the same way as AR model. However, equation (3) can be 



Modeling and forecasting monthly electricity price of Sweden with periodic autoregressive models                             6 

transform into matrix form. 

{ } { }0 1 1 12 11 12 0 112 12 12 12

1
12 ,

( ),

, ( ,..., ),  12, , .  (4)
0 2,0 1,( ,..., ),  ,  1 .2, 2,

t t t t t t ij ij

t p ij ij
j i i

i j i

A Y AY Y y y order p A a A b
i j ij i jdiag b a i ji j i j i j

ω

ω ε ε
φ

φ

− − × ×

− +

−

= +  = ≤ = =

 ≥ >
≥ > 

= = = = 
≥ > − ≥ >

    For the equation (4), it is similar to equation (1), the estimation methods of AR(p) 
can also be used in periodic AR model. To modeling data with periodic AR model, the 
first step is to choose proper order p. 

3.2.2 Choice on order p 

Akaike information criterion and Bayesian information criterion are two widely 
used statistics to compare the fitness of different models. Usually, a model which has 
smaller AIC and BIC value fits better than other models. In periodic AR model, AIC 
and BIC are calculated in each month separately. To get a unique p, models which 
have smaller sum of AIC and BIC are better fitting. 

Table 2. Value of AIC and BIC 
Order p  Order p 

Month 1 2 3 4     1 2 3 4 
1 70.18 56.28 57.91 59.87  1 70.18 56.76 58.88 61.33 
2 73.24 59.77 56.45 58.36  2 73.24 60.25 57.42 59.82 
3 55.62 45.26 46.95 43.42  3 55.62 45.66 47.74 44.61 
4 51.55 36.74 37.70 39.50  4 51.55 37.14 38.49 40.69 
5 45.48 23.25 25.14 26.05  5 45.48 23.65 25.94 27.25 
6 53.80 39.67 38.68 32.57  6 53.80 40.06 39.48 33.76 
7 57.62 22.93 18.90 15.45  7 57.62 23.33 19.70 16.64 
8 60.75 35.88 37.81 37.75  8 60.75 36.27 38.61 38.94 
9 61.93 32.55 32.46 34.40  9 61.93 32.95 33.25 35.59 

10 55.64 30.55 30.30 31.58  10 55.64 30.95 31.10 32.77 
11 53.63 35.14 26.84 28.26  11 53.63 35.54 27.63 29.45 
12 66.36 59.38 52.91 54.85  12 66.36 59.77 53.70 56.05 

Sum 705.80 477.40 462.05 462.06  Sum 705.80 482.33 471.94 476.90 

Note: This table combines the table of AIC and BIC. The left part is table of AIC and 
the right part is table of BIC. The AIC and BIC are calculated separately each month. 
Sums of AIC and BIC are statistics for choosing the proper order p. 
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Observing table 2, when order p is 1, sums of AIC and BIC are much bigger than 

other models. When order p is 2 3 or 4, sums of AIC and BIC are close. With the 
increasing of order p, the difficulty of modeling and forecasting increases much more. 
To achieve a compromise between accuracy and efficiency, order p is chosen as 2. 
The model can be given as, 

12
2

, 1, 1 2, 2 ,
1

1, ,

0 is not in the month i( ) , ~ (0, ), ,    (5)1 is in the month i
where ,...,  are coefficients at i-th month in a year, is the price of month t.
t i t i t i t t t i t

i

i p i t

ty D y y WN D t
y

φ φ ε ε σ

φ φ

− −
=

 
= + + = 

 
 

∑

 

For the equation (4), apply Yule-Walker estimation (Brockwell and Davis 2002) 
to the monthly prices of Sweden from January in 2000 to February in 2011 to get the 
coefficients. Based on the equation (4), the coefficients of equation (5) can be got. In 
periodic AR model, models are set based on the month electricity price data of 
Sweden, not including data of the other countries. From the analysis of figure 1 in 2.1, 
the price of Sweden may be influenced by the price of Denmark and Norway. To 
include data of the other countries, periodic vector autoregressive model is used. 

3.3 Periodic VAR model 

Periodic VAR model is one kind of periodic autoregressive model which uses 
vector series. Before modeling the data with vector series, which variables are 
included in the vector should be decided firstly. In other words, the countries whose 
prices have influence on Sweden must be found. 

3.3.1 Bivariate Granger causality tests 
Suppose the model is bivariate, it is given as 
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2
1 0 1 1 1 1        ... ... , ~ (0, )                      (6)

       where  is monthly price of Sweden, and  is monthly price of other country. If 
 is not influence by

t t p t p t p p t t

t t

t

y c a y a y b x b x u u WN

y x
y

σ− − − −= + + + + + + +

0 1

2
1 0 1

 ,  the null hypothesis is: H : ... 0. It means that (6) is 
transformed into univariate case: ... , ~ (0, ).

t p

t t p t p t t

x b b
y c a y a y e e WN σ− −

= = =

= + + + +

 

Apply ordinary least squares estimation to bivariate and univariate case 
separately, and calculate the residual sum of squares of each model. The statistic is  

0 1

1

0 1

( ) /0 ~ ( , 2 1).                                                           (7)/ ( 2 1)
where RSS  is the RSS in univariate case, RSS  is the RSS in bivariate case.

RSS RSS pS F p n pRSS n p
−  

= − −
− −  

 

Set the significant level as 0.05. When price of Norway is included in the 
bivariate vector, p value of S0 is always above 0.1 when order p<5, that does not 
reject null hypothesis. It means that price of Sweden is not influenced by Norway 
price. When price of Denmark is included in the bivariate vector, p value of S0 is 
always below 0.05 when order p<5, that rejects null hypothesis. It means that price of 
Sweden has some relationship with price of Denmark. 

According to the bivariate Granger causality tests results and introduction of 
Nord Pool, Norway has exported much more electricity than it has imported. 
Moreover, Norway has the largest amount of electricity using and producing among 
the three countries. So the electricity market in Norway is not easy to be influenced by 
other countries. On the other side, Sweden imported just a small amount of electricity 
every year compared to its producing and using of electricity. So its market is not 
influence significantly by Norway and Denmark, either. For Denmark, it has the 
smallest amount of producing and using in electricity among three countries. So the 
small amount of importing from Sweden has big influence on Denmark. The monthly 
electricity price of Denmark is influenced by price of Sweden. 
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3.3.2 Modeling 

Similar with equation (4), the model is given as, 

0 1 1 12 11 12 1, , 2,

1, 2, 0 1

        , ( ,..., ), ( ) , 12                                 (8)
       where  is price of Sweden,  is price of Denmark, , ,  is the same in the 
equati

T
t t t t t t t t t

t t t

A Y AY Y y y y y y p
y y A A

ω

ω

− −= +  = = ≤

on (4),  is coefficients matrice.ijφ

 

Observing equation (8), it is easy to understand but hard to calculate. Extracting 
the price of Sweden from the vector, equation (8) is transformed into, 

12
2

1, , 1, 1, 1 , 1, 1, 2, 1 , 2,
1

1, ,

( ... ... ) , ~ (0, )        (9)
0 is not in the month iwhere  is the same in (8), ,  .1 is in the month i

t i t i t p i t p i t p i t p t t
i

t i t

y D y y y y WN

ty D t

φ φ ϕ ϕ ε ε σ− − − −
=

= + + + + + +

 
= 

 

∑

 

Observing equation, the first step is to choose the proper order p. In section 3.2, 
order p is chosen as 2 for periodic AR model. If order p is 2, the periodic VAR model 
will be better than the model in section 3.2 since vector model includes the effects of 
other countries. With the increasing of order p, the calculation of equation (9) 
becomes much more difficult. To achieve a compromise, order p is chosen as 1 which 
is close to value 2. 

When order p is 1, equation (9) is transformed into, 
12

2
1, , 1, 1, 1 1, 2, 1

1
( ) , ~ (0, ).                                            (10)t i t i t i t t t

i

y D y y WNφ ϕ ε ε σ− −
=

= + +∑
 

To estimate the coefficients of (10), suppose 1, 1,( , ), 1,...,12i i i iβ φ ϕ=  =  which 

stand of coefficients of i-th month in a year. Maximum likelihood estimation is widely 
used for estimating coefficients. To calculated the MLE of iβ , equation (10) is 
transformed into 

1, 1 1, , 2,, ( ) , 12 ,0 12, .                                   (11)T
t i t t t t ty y y y y t i k i k Zβ ε−= + = = + < ≤ ∈
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   For (11), likelihood function is 
1

2 2
12

1ln(2 ) ( )2 2
nt

i i t
i t

n y yπσ β
σ

−
=

−
− − ∑ , which is 

2ln( ( , )),iL β σ  where n is the number of i-th month in a year among the observations. 

1

1

2 2
2

i 12 2 2 2 2

2 2 2 2
1 1

1

ˆln( ( , )) ln( ( , ))1      For fixed β , ( ) . If  isˆ( ) 2 2( ) ( )
1 2ˆzero, ( ) . The profile likelihood of  is ln( ( ) )2

whi

n

n n

t
i i

i i t
i t

t t
n

i i t i i t
i t i

L Ln y y

ny y y yn n

β σ β σ
β

σ σ σ σ

π
σ β β β

−
=

− −
= =
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∂ ∂
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∑
∑ ∑

�

2
1

1
ch is ln( ( )). To maximize ln( ( )), it is equivalent to minimize ( ) ,

that is the same as OLS estimation.

nt

i i i i t
i

L L y yβ β β −
=

 −  ∑

     The result of equation (11) is 1
1 1 1 1, 1 1, 1 2, 1( ) ,  ( , ) T

i t t t t t t tY Y Y Y Y Y Yβ
∧

−

− − − − − −= = . As for 
elements in 1tY − , 1, 1, 12 1, 1, 12 2, 2, 12 2, 2, 12  (..., , , ,...) and  is (..., , , ,...)t t t t t t t tY is y y y Y y y y− + − + . 

Other parameters are the same with that in equation (11). The process of calculation of 
coefficients is similar with Yule-Walker estimation (Brockwell and Davis 2002), 
which is the ordinary least squares estimation of sample autocorrelations. To include 
seasonality into model, one way is to use periodic model, the other way is to use 
seasonal models. Seasonal AR model is used for comparisons with other models. 

3.4 SAR model 

SAR model is one kind of seasonal ARIMA model of whose moving average 
term and integrated term is zero. For data in this thesis, period is 12 since it is monthly 
data. For SAR model notated as seasonal ARIMA(p,0,0)×(P,0,0), p is chosen as 2, to 
keep the same autoregressive term with the above AR and PAR models. P is chosen as 
1 since there is a spike at lag 11 in figure 3. The SAR model is given as, 

2 2 12
1 2 1

t

( ) ( ) ,  ~ (0, ),  ( ) 1 ,  ( ) 1 ,     (12)
where y  is price of Sweden in month t.

t t tL L x c WN L L L L Lφ ε ε σ φ φ φΦ = + = − − Φ = − Φ

    The coefficients of equation (12) are got from maximum likelihood estimation. 
After calculation of coefficients of models, the results must be discussed whether they 
support the assumption of models. 
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4. Results 
4.1 Coefficients of models 

The coefficients of AR model and PAR model are got separately from applying 
Yule-Walker estimation to equation (2) and equation (5). Apply ordinary least squares 
to equation (10) and the coefficients of periodic VAR model are the results. 
Coefficients of SAR model are from applying maximum likelihood estimation to 
equation (12). All the coefficients are presented in table 2. 

Table3. Coefficients of models 
 AR Periodic AR Periodic VAR SAR 

Coefficient 1 2 1 2 1 2 1 2 3 4 
Jan. 1 -0.18 0.87 0.22 0.51 0.47 35.55 -1.01 0.17 -0.07 
Feb. 1 -0.18 1.56 -0.63 0.95 0.04 35.55 -1.01 0.17 -0.07 
Mar. 1 -0.18 0.58 -0.12 -0.11 1.01 35.55 -1.01 0.17 -0.07 
Apr. 1 -0.18 0.90 -0.12 -0.42 1.37 35.55 -1.01 0.17 -0.07 
May. 1 -0.18 0.67 0.04 0.53 0.35 35.55 -1.01 0.17 -0.07 
Jun. 1 -0.18 0.31 0.78 -0.001 1.05 35.55 -1.01 0.17 -0.07 
Jul. 1 -0.18 0.90 0.44 0.93 0.06 35.55 -1.01 0.17 -0.07 
Aug. 1 -0.18 0.96 0.16 1.55 -0.38 35.55 -1.01 0.17 -0.07 
Sep. 1 -0.18 0.68 0.42 0.62 0.42 35.55 -1.01 0.17 -0.07 
Oct. 1 -0.18 1.10 -0.41 0.38 0.55 35.55 -1.01 0.17 -0.07 
Nov. 1 -0.18 1.76 -0.72 0.69 0.31 35.55 -1.01 0.17 -0.07 
Dec. 1 -0.18 3.36 -2.01 1.51 -0.36 35.55 -1.01 0.17 -0.07 

Note: This is a table recording coefficients of models in section 3. The first column in 
AR columns and that in periodic AR columns is coefficient for price of Sweden at 
month (t-1), and the second in AR columns is coefficient for price of Sweden at month 
(t-2) in equation (2). For periodic VAR model, the first column is coefficient for price of 
Sweden at month (t-1) and the second is coefficient for price of Denmark at month (t-1) 
in equation (10). For SAR model, the first column is coefficient for the constant, the 
second is coefficient for price of Sweden at month (t-1) in ordinary AR term, the third is 
coefficient for price of Sweden at month (t-2) in ordinary AR term, and the fourth is 
coefficient for the price of Sweden at month (t-1) in seasonal AR term in equation (12).  
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Observing table 3, for AR model and SAR model, its coefficients are not 
changed with varying of months. For periodic AR and periodic VAR model, the 
coefficients are different in each month. That is why they are called periodic model. 

4.2 Box-Pierce tests 

In equation (1) which is AR(p), (3) which is PAR(p), (8) which is periodic 
VAR(p) and (12) which is ARIMA(p,0,0)×(P,0,0), there is the same term tε  which is 

a white noise. All these four models are set based on this assumption. tε  is the error 

term, which can be estimated by residuals. If residuals are white noises, tε  can also 
be regarded as white noises. 

Suppose t̂ t ty yε
∧

= −  which are residuals, the null hypothesis is 
2

0 ˆ: ~ (0, )tH WNε σ , and the statistic is 1 10(10) ( ... )Q T ρ ρ
∧ ∧

= + + , which converges in 

distribution to a random variable follows 2 (10)χ , where jρ
∧

 is the sample 
autocorrelation between price of Sweden at month t and month (t-j).  

Set significant level as 0.01, the statistic for AR model is 15.43, and p value for 
Q(10) is 0.12. So the test result does not reject the null hypothesis, and shows that the 
residuals are a white noise. The assumption of AR model that the error term can be 
regarded as a white noise is supported by this test result.  

Applying the Box-Pierce test to periodic AR model, the statistic is 19.31, and p 
value is 0.04. For periodic VAR model, the statistic is 11.39, and p value is 0.33. For 
SAR model, the statistic is 16.35, and p value is 0.09. According to test results above, 
these four models all have residuals which are white noises. It means that the 
assumptions of models are supported by the results of tests. These four models can all 
be used in forecast section. To observe the details of the residuals, figure 4 is plotted. 
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Figure4. Plot of residuals in four models 
 
Observing figure 4, for AR model, residuals are bigger than others in year 2002, 

2006 and 2010. For periodic AR model, residuals are bigger than others in year 2002, 
2008 and 2010. For periodic VAR model, residuals are bigger than others in year 2001, 
2009, 2010. For SAR model, residuals are bigger than others in year 2003, 2006, 
2008，2010. The same thing among four plots in figure 4 is that residuals are bigger in 
the end and the beginning of a year. It may have some relationship with the season. 
When it is the end or the beginning of a year, the season is winter, and the using of 
electricity becomes much more than usual. If the weather changes suddenly, it makes 
the market more unpredictable.  

5. Forecasting 
In section 4, the four models all satisfy the assumption of the model. To choose 

the best model among these ones, forecast performance is considered. In this thesis, 
monthly electricity prices of Sweden from March 2010 to February 2011 are 
forecasted based on data from January in 2000 to February in 2010. The first step is t 
o set four new models on new data. Secondly, using new models and data, forecast the 
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price of Sweden from March in 2010 to February in 2011 one by one. To compare the 
forecast performance, the model whose mean square error that is smaller is better than 
others. Mean square error is the expectation of the squares of error, which can be 

estimated as 
134

2

123

1MSE ( )12 t t
i

y y
∧

=

= −∑ , where ty  is the sample value of price at 

month t, and ty
∧

 is the forecast value of price at month t.  

Table4. Mean square error of models 
 AR Periodic AR Periodic VAR SAR 

MSE 585.48 430.03 178.52 896.71 
 

Observing table 4, periodic VAR model has the smallest mean square error, 
which shows it has the best forecast performance. Mean square error just measure 
overall forecast performance. To observe the details of forecast performance, figure 5 
is plotted. 

 
Figure5. Plot of sample and forecast values of price  

 
Notes: In this figure, point lines stand for the forecast values, and solid 
lines stand for sample values. Y-axes have names of modes which are used 
for forecasting. 
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Observing figure 5, forecast values of AR model and SAR model have different 
trends comparing with sample values. For AR model, it is because seasonality is not 
included. For SAR model, apply SAR integrated model to the new data, it is given as 

12 2

12 12
1 1

(1 ) (1 ) ,  ( ) ( ) , ~ (0, ),   is price at month t.
where ( ) 1 ... , ( ) 1 ... ( ) .

d D
t t t t t t

p P
p P

x L L y L L x c e e WN y
L L L L L L

φ σ

φ φ φ

= − − Φ = +

= − − − Φ = − Φ − − Φ

 
When p, d, P and D are in {0,1,2,3,4}, the smallest value of mean square error 

among different SAR integrated models is 322.3756. So the SAR model can forecast 
better than ordinary AR model. In figure 5, the SAR model does not forecast well 
because its autoregressive orders are not chosen properly. 

In figure 5, periodic AR model forecast better than AR model and SAR model, 
but it has large error at the month 1 and 12. Considering that month 1 and 12 are in 
winter, it has been discussed in section 4.2 on figure 4 that the electricity market is 
much more unpredictable in winter. Periodic VAR model forecast best among all the 
models, whether comparing mean square errors or observing figure 5. It is the best 
model for modeling and forecasting monthly electricity price of Sweden. 

6. Conclusion 
In this thesis, it is aimed at finding the best model for modeling and forecasting 

monthly electricity price of Sweden among various autoregressive models. The data is 
from Nord Pool which is monthly electricity price including Sweden, Denmark and 
Norway. To model on the data, AR model, periodic AR model, periodic VAR model 
and SAR model are used. Based on results of models, the best model is chosen if the 
results support the assumption and the model has best forecast performance. Periodic 
VAR model is chosen as the best model for modeling and forecasting monthly 
electricity price of Sweden. 

In the process of modeling, one step is to choose order p. In this essay, order p 
which is bigger than 12 is not considered. The difficulty of modeling and forecasting 
will increase with the increasing of order p. But for monthly data whose period is 12, 
bigger order p may make the model more fit to the real market. 
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In this thesis, monthly electricity price of Sweden is considered to be influenced 
by past prices of Sweden and Denmark. But in some months, the price may be 
influenced by some factors outside the electricity market of Nord Pool. For example, 
electricity produced from wind power in Sweden has been increasing fast. With the 
development of new renewable power, the electricity price of Sweden will changes 
because the cost of electricity production changes. For future research, these factors 
can be taken into modeling. 



Modeling and forecasting monthly electricity price of Sweden with periodic autoregressive models                             17 

Appendices 
1. Yule-Walker Estimation (Brockwell and Davis 2002) 

Yule-Walker estimation is a widely used method to estimate the coefficients of 
autoregressive models. Suppose autoregressive model with order p is given as, 

2
1 1 1 1 ... , ~ (0, ) . t t p t p t ty y y WNφ φ ε ε σ+ − + += + + +   

The equation above is multiplied on both sides by ty , and also taken expectance 
on both sides. It transform into, 

2
1 1 1 1E(  ) ( ) ... ( ) ( ), ~ (0, ) . t t t t p t t p t t ty y E y y E y y E y WNφ φ ε ε σ+ − + += + + +   

ty  has no relationship with 1tε + , which means that 1( )t tE y ε +  equals zero. It is 

transformed into 1 1 1E(  ) ( ) ... ( )t t t t p t t py y E y y E y yφ φ+ − += + + , which can be transformed 

into 1 1 0 2 1 1ˆ ˆ ˆ ˆ ˆ... ,   is i-th order sample covariancep p iγ φ γ φ γ φ γ γ−= + + + , by dividing both 

sides with (N-1), N is the amount of observations. By dividing both sides with 0γ̂ , 

finally the equation is transformed into 1 1 0 1ˆ ˆ ˆ ˆ... ,   is autocorrelationp p iρ φ ρ φ ρ ρ−= + + . 

Similarly, there is 2 1 1 2ˆ ˆ ˆ... p pρ φ ρ φ ρ− −= + +  and so on, noting that ˆ ˆi iρ ρ− = . 

The results of the transformation for these equation form a matrix equation 
which is given as, 

1 1 | |ˆ ˆ ˆ,  where ( ,..., ) , ( ,..., ) , ( ) ,T T
p p ij p p ij i jP p p Pφ φ ρ ρ ρ ρ ρ× −Φ = Φ = = = = . 

The coefficients of AR(p) calculated by Yule-Walker estimation is 1ˆ P p−Φ = . 

2. Part of codes  

Some of these codes may help understand the content of thesis. 
# Data and packages  
Price=read.table("dt.txt",header=T); library(tseries); library(MSBVAR); 
library(pear) 
Sweden=ts(Price$Sweden,start=c(2000,1),end=c(2011,2),frequency=12) 
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Denmark=ts(Price$Denmark,start=c(2000,1),end=c(2011,2),frequency=12) 
price=ts(Price,start=c(2000,1),end=c(2011,2),frequency=12) 
 
# Plot of figure 2 
Newsweden=matrix(rep(0,132),nrow=12) 
Newsweden=as.data.frame(Newsweden) 
for(i in 1:11){ 
A=12*i-11; B=12*i 
Newsweden[,i]=Sweden[A:B]} 
newsweden=ts(Newsweden,start=c(0,1),end=c(0,12),frequency=12) 
ts.plot(newsweden,gpars=list(xlab="Month", ylab="Price", lty=c(1:12))) 
 
# Modeling of AR model 
ts0=ar.yw(ts(Sweden)); res.0=ts0$resid 
Box.test(res.0,lag=10,type=c("Box-Pierce")) 
# All the Box-Pierce tests in this thesis use the same function and parameters. 
 
# Modeling of periodic AR model 
plot(Sweden); pepacf(Sweden, plot=TRUE); peacf(Sweden) 
ts1=pear(Sweden,2); res.1=residuals(ts1) 
 
# Modeling of periodic VAR model 
granger.test(price,p) # p is in {1,2,…,5}. 
 
b0=NULL; y1=NULL; y2=NULL; y=NULL; Y=NULL; RES=NULL;  
RES0=NULL; N=length(Sweden) 
 
for(i in 1:12){ 
n=floor((N-i-1)/12); y1=Sweden[i]; y2=Denmark[i]; y=Sweden[i+1] 
for(j in 1:n){ 
y1=c(y1,Sweden[i+12*j]); y2=c(y2,Denmark[i+12*j]); 
y=c(y,Sweden[i+1+12*j])} 
Y=cbind(y1,y2); b=solve(t(Y)%*%Y)%*%t(Y)%*%y; RES=Y%*%b-y; 
b0=cbind(b0,b); RES0=c(RES0,RES)} 
b0# Coefficients of periodic VAR model 
RES00=ts(RES0,start=c(2000,2),end=c(2011,2),frequency=12)# Residuals. 
 

# Modeling of SAR model 
ts3=arima(Sweden, order = c(1,0,0), seasonal = list(order=c(1,0,0))) 
 
# Forecast using periodic AR mode 
dt=Sweden[123:134]; nts0=ar(ts(Sweden[1:122]),1); 
Dt0=predict(nts0,n.ahead=12); dt0=Dt0$pred; MSE0=sum((dt-dt0)*(dt-dt0))/12 
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# Forecast using periodic AR model 
new=ts(Sweden[1:122],start=c(2000,1),end=c(2010,2),frequency=12) 
nts1=pear(new,2); Phi=nts1$phi; nPhi=NULL 
 
for(i in 3:12){ 
nPhi1=Phi[i,]; nPhi=rbind(nPhi,nPhi1)} 
nPhi=rbind(nPhi,Phi[1,]); nPhi=rbind(nPhi,Phi[2,]); Old1=Sweden[122:133]; 
Old2=Sweden[121:132]; Old=rbind(Old1,Old2) 
Ans=nPhi%*%Old; dt1=diag(Ans); MSE1=sum((dt1-dt)*(dt1-dt))/12 
 
# Forecast using periodic VAR model 
b1=NULL; y1=NULL; y2=NULL; y=NULL; Y=NULL; RES=NULL 
RES1=NULL; N=length(Sweden); Old1=Sweden[122:133];  
Old2=Denmark[122:133]; Old=cbind(Old1,Old2) 

 
for(i in 1:12){ 
n=floor((N-i-1)/12); y1=Sweden[i]; y2=Denmark[i]; y=Sweden[i+1] 
for(j in 1:(n-1)){ 
y1=c(y1,Sweden[i+12*j]); y2=c(y2,Denmark[i+12*j]);y=c(y,Sweden[i+1+12*j]} 
Y=cbind(y1,y2); b=solve(t(Y)%*%Y)%*%t(Y)%*%y; RES=Y%*%b-y 
b1=cbind(b1,b); RES1=c(RES1,RES)} 
newb1=NULL 
for(i in 2:12){ 
newb=b1[,i]; newb1=cbind(newb1,newb)} 
newb1=cbind(newb1,b1[,1]) 
Ans=Old%*%newb1; dt2=diag(Ans); MSE2=sum((dt-dt2)*(dt-dt2))/12 
 
# Forecast using SAR model 
nts3=arima(Sweden[1:122],order=c(2,0,0),seasonal=list(order=c(1,0,0),period=1

2)); Dt3=predict(nts3,12); dt3= Dt3$pred; MSE3=sum((dt-dt3)*(dt-dt3))/12 
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