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Abstract 

This paper concerns about specifying the threshold autoregressive model and 

forecasting. We consider theU.S. imports of conventional motor gasoline data and test 

threshold nonlinearityusing twomethods. One is Tsay’s F test and the other one is 

Hansen’s sup-LR test. Our data has threshold nonlinearity. Between two methods, 

forecasting from Hansen’s method is better. Compared with linear autoregressive 

model, threshold autoregressive models generallyoutperform. 

 

Key words: Threshold Autoregressive Model, NonlinearityTest,Tsay’s F Test, 

Hansen’s Sup-LR Test 
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1. Introduction 

Nowadays, nonlinear time series models have been widely used in the economic 

field. Being affected by complex economic factors, time series data may have 

different behavior in different processes and may show nonlinearity. Nonlinear time 

series models open a new door for estimation and forecasting this kind of economic 

time series data. There is a typical nonlinear time series model - the threshold 

autoregressive (TAR) model- which is easy to do modeling with regime-switching 

data. In this paper, we are interested in the threshold autoregressive model and 

applyitto analyze the U.S. imports of conventional motor gasoline data.   

The threshold autoregressive model describes complex dynamic data as an 

extension to autoregressivemodels. It is popular in application to nonlinear time series 

data.The TAR model is first introduced by Tong(1978). And then, Tong and Lim 

(1980)first complete the TAR model’s exposition, and give effective technology for 

the practical issues in application (Geweke, 2007). And then, there are several 

scholars researched and developed test methods for the TAR model. For instance, 

Tsay (1989) proposed the F test which combined three studies of nonlinearity tests of 

Keenan (1985), Tsay (1986), and Petruccelli and Davies (1986). Hansen (1997) 

proposed the sup-LR test to study the threshold autoregressive.They are two popular 

approaches in recently studies.Scholars also have found a lot of good applications in 

different fields, such as economics, finance, ecology and public health. Particular in 

recently years, many scholars apply the TAR model to analyze real exchange rates, 

interest rates, and stock return etcin economic and finance field. (Johansson, 2001; 

Hardy, 2001; Hansen, 2011). 

With the rapid development of modern industry, energy resource, such as crude oil, 

is consumed increasing faster than before. In the use of crude oil field, gasoline as a 

kind of products refined from crude oil has been widely used in the modern industry.  

One kind of gasoline – motor gasoline is widely used in our lives, since we need it to 

our cars or other vehicles. Therefore, motor gasoline price fluctuations will bring 
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about living costs changes for people. This is the reason why more and more people 

pay more attention to the price of motor gasoline. The import of conventional motor 

gasoline is very important partfor the U.S. gasoline marketsupply. Therefore, it is the 

motivation for us to study the U.S.imports of conventional motor gasoline.  

The structure of this paper is as follows. In Section 2, we will introducethe TAR 

model and two nonlinearity tests. In Section 3, we will describe theimport of 

conventional motor gasoline data. Section 4illustrates how to do modeling and 

forecasting using the TAR model. The last section is conclusion. 

2. Method 

2.1 The Threshold Autoregressive Model 

The threshold autoregressive model is first proposed by Tong(1978). Tong and Lim 

(1980) first complete the TAR model’s exposition. Based on theseliteratures,suppose a 

time series Yt followsthethreshold autoregressive model below:  

                    Y୲ ൌ φ଴
ሺ୨ሻ ൅ ∑ φ୧

ሺ୨ሻY୲ି୧ ൅ ε୲
ሺ୨ሻ ,     r୨ିଵ ൑ Y୲ିୢ ൏ r୨

୮
୧ୀଵ          (1) 

Where r୨(j=1,…,k) are the threshold values which belongtoെ∞ ൌ r଴ ൏ rଵ ൏ ڮ ൏

r୩ ൌ ∞; k is the number of regimes;ε୲
ሺ୨ሻ~ iidሺ0, σଶሻ. d is the threshold lag and pis the 

autoregressive order. Let’s considerthe following model as an example including two 

regimes (k=2)and one threshold valuerଵ.  

                   Y୲ ൌ ൝
φ଴
ሺଵሻ ൅ ∑ φ୧

ሺଵሻY୲ି୧ ൅ ε୲
ሺଵሻ, if Y୲ିୢ ൑ rଵ

୮
୧ୀଵ

φ଴
ሺଶሻ ൅ ∑ φ୧

ሺଶሻY୲ି୧ ൅ ε୲
ሺଶሻ, if Y୲ିୢ ൐ rଵ

୮
୧ୀଵ

      (2) 

We will introduce test approaches based on model (2) in Section 2. 
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2.2 Tsay’s Approach 

This approach is first introduced by Tsay(1989)which proposed F statistic for the 

test in his paper. Tsay’s F-testcan avoid knowing threshold values directly and makes 

the nonlinearity test more simply and widely utilized than before (Tsay, 1989; Zivot& 

Wang, 2005). The point of thisapproach is the use of the arranged autoregression with 

recursive least squares (RLS) estimation.  

2.2.1 Testing Procedure 

Observations need to be sorted according to the threshold values from the smallest 

observation to the largest observation.  

Assume a set of observations ൫Y୲, 1, Y୲ିଵ, … , Y୲ି୮൯, where t ൌ p ൅ 1,… , n. For the 

threshold variable Y୲ିୢ, there exist two situations. When d ൑ p ൅ 1, the threshold 

variables are൫Y୮ାଵିୢ, … , Y୬ିୢ൯. On the other hand, when d ൐ ݌ ൅ 1, the threshold 

variables areሺYଵ, … , Y୬ିୢሻ. Therefore, we combine two situations together: threshold 

variablesሼY୦, … , Y୬ିୢሽ, where h ൌ maxሼ1, p ൅ 1 െ dሽ. We sort them by a new time 

index  π୧ which expressnew order fromthe ith smallest observationin the 

set ሼY୦, … , Y୬ିୢሽ . Therefore, i ൌ 1,2, … , n െ d െ h ൅ 1  and n െ d െ h ൅ 1  is the 

effective sample size. Here, we use  Y஠౟  instead of  Y୲ିୢ  to showthe threshold 

variable.For example, if the tenth observation in ሼY୦, … , Y୬ିୢሽ  is the 

smallest,then πଵ ൌ 10 െ d.And then, the model (2) can be arranged as follow: 

  Y஠౟ାୢ ൌ ൝
φ଴
ሺଵሻ ൅ ∑ φ୴

ሺଵሻY஠౟ାୢି୴ ൅ ε஠౟ାୢ
ሺଵሻ , if Y஠౟ ൑ rଵ

୮
୴ୀଵ

φ଴
ሺଶሻ ൅ ∑ φ୴

ሺଶሻY஠౟ାୢି୴ ൅ ε஠౟ାୢ
ሺଶሻ ,   if Y஠౟ ൐ rଵ

୮
୴ୀଵ

  (3) 

So the threshold variables Y஠౟which are smaller than rଵwill fit to the first equation, 

while the threshold variables Y஠౟which are larger than rଵ  will fit to the second 

equation.And then, Tsay usesrecursive least squares (RLS) estimates of φ୴ in model 
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(3) to calculate the F statistic for testing the threshold nonlinearity.   

Based on Ertel and Fowlkes (1976) and Goodwin and Payne (1977), the RLS 

estimates are calculated as follows: 

β෠୫ାଵ ൌ β෠୫ ൅ K୫ାଵൣYୢା஠ౣశభ
െ x୫ାଵ

ᇱ β෠୫൧, 

D୫ାଵ ൌ 1.0 ൅ x୫ାଵ
ᇱ P୫x୫ାଵ, 

K୫ାଵ ൌ P୫x୫ାଵ D୫ାଵ,⁄  

P୫ାଵ ൌ ሺI െ P୫
x୫ାଵx୫ାଵ

ᇱ

D୫ାଵ
ሻP୫ 

Where β෠୫is the vector of least squares estimates of model (3); P୫is the associated 

XᇱX inverse matrix and x୫ାଵis the vector of regressors of the next observation to 

enter the autoregerssionYୢା஠ౣశభ
.Then the predictive residual is  

εොୢା஠ౣశభ
ൌ Yୢା஠ౣశభ

െ x୫ାଵ
ᇱ β෠୫      (4) 

and standardized predictive residual is   

eොୢା஠ౣశభ
ൌ εොୢା஠ౣశభ ඥD୫ାଵ⁄       (5) 

(See Section 3.2 in Tsay, 1989) 

And then, Tsay computes F statistic for testingthreshold nonlinearity as follows: 

F෠ሺp, dሻ ൌ
൫∑ e୲ෝ

ଶ െ ∑ Ԗ୲ෝ
ଶ൯ ሺp ൅ 1ሻൗ

∑ Ԗ୲ෝ
ଶ ሺn െ d െ b െ p െ hሻൗ

           ሺ6ሻ 

where Ԗ୲ෝ  is residual of regression below, 

eො஠౟ାୢ ൌ ω଴ ൅ ∑ ω୴Y஠౟ାୢି୴ ൅ Ԗ஠౟ାୢ
୮
୴ୀଵ       (7) 

When there is existing threshold nonlinearity,ωෝ୴ is statistically significant.This F 

statistic is an approximately F distributionwith degree of freedom ሺp ൅ 1ሻandሺn െ

d െ b െ p െ hሻ. Furthermore, ሺp ൅ 1ሻF෠ሺp, dሻis asymptotically a chi-squared random 

variable with degree of freedom ሺp ൅ 1ሻ (See Theorem 3.1 in Tsay, 1989) 
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2.2.2 Modeling Procedure 

For modeling the TAR model, wefirstly select the order p via autocorrelation function 

(ACF) andpartial autocorrelation function(PACF). According to order p, we usually 

make the range of d, which isd ൑ p. For all possible lags d, the number of possible (p, 

d) is p. And then, we can calculate the test statisticF෠ሺp, dሻp times. If reject the null 

hypothesis of linearity,it is possible to choose lag d when the maximum F statistic is 

obtained.That means we choose the lag d when the P-value ofF෠ሺp, dሻis minimum. 

After above steps, we already gain order p, lag d and the predictive residuals, and 

then we need to locate the threshold values. Tsay(1989) suggests usinga figure - “the 

scatter plot of the t-statistics of recursive least squares estimates versus the order 

threshold variable” to locate the threshold value.  

BesidesTsay’s approach, we will introduce another method. 

2.3 Hansen’s Approach 

In Hansen (1997), model (2) is rewritten as:  

      Y୲ ൌ ቀφ଴
ሺଵሻ ൅ ∑ φ୧

ሺଵሻY୲ି୧
୮
୧ୀଵ ቁ I ሺY୲ିୢ ൑ rଵሻ ൅ ቀφ଴

ሺଶሻ ൅ ∑ φ୧
ሺଶሻY୲ି୧

୮
୧ୀଵ ቁ IሺY୲ିୢ ൐ rଵሻ ൅ ε୲(8) 

where ε୲~ iidሺ0, σ2ሻ. The advantage of Hansen’s method is that the threshold values 

can be estimated together with other model parameters. However, it also has 

limitation that the method in Hansen (1997) is only able to apply in TAR with two 

regimes. 

Hansen (1997) use Sup-LR test to test threshold nonlinearity. The likelihood ratio 

testis computed as follows: 

                      Fሺrଵሻ ൌ
RSSబିRSSభ
஢ෝభ
మሺ୰భሻ

ൌ nᇱ ஢
ෝబ
మି஢ෝభ

మሺ୰భሻ

஢ෝభ
మሺ୰భሻ

 (9) 

Where RSS଴is the residual sum from the null hypothesis and RSSଵis the residual sum 

from the alternative hypothesis given the threshold valuerଵ. σෝ଴
ଶis the residual variance 

under the null hypothesis and σෝଵ
ଶ is the residual variance under the alternative 
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hypothesis. This test is the standard F test. However, there is a problem thatis the 

threshold value is unknown.For solving this problem, Hansen (1997) proposed an 

approach that is sup-LR test to search all of possible values of the threshold variable. 

The equation of sup-LR is as follow: 

Fୱ ൌ sup୰భאYౚ Fሺrଵሻ      (10) 

where Yୢis the set of threshold variable. Then we choose the threshold value when 

σෝଵ
ଶሺrଵሻ is minimum. The asymptotic distribution is non-standard, but the critical 

value is available (See Hansen, 1997, 2000). 

3. Data 

 

Figure 1: Weekly data of U.S. Imports of Conventional Motor Gasoline (Thousand Barrels per 

Day) 

 

Our data is from U.S. Energy Information Administration (http://www.eia.doe.gov). It 

is Weekly U.S. Imports of Conventional Motor Gasoline (Thousand Barrels per Day), 

from January 07, 1994 to December 31, 1999. 
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4. Results 

In this section, we will use U.S. imports of conventional motor gasoline data to do 

modeling and forecasting.  

4.1 Modeling 

4.1.1Choose Order p 

First, ACF & PACF help us to determine order p. 

 

Figure 2: ACF & PACF 

 

In Figure 2, ACF has a tail and the tail is cut off in PACF. We focus on PACF. After 

p=2, the PACF function is falling down rapidly, and after p=5, the significance of 

PACF is not strong. Since high order AR model can fit nonlinear dynamics well, we 

try lower order in nonlinear model (p=2). We also consider an AR (5) model to 

compare with nonlinear models. 

4.1.2 Nonlinearity Test and Selecting the Delay Parameter d 

Then we use Tsay’s F test to test existence for threshold nonlinearity. The null 
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hypothesis is no threshold nonlinearity.  

 

Table 1: Nonlinearity test when p=2 

  Threshold lags,d 
 1 2 

F-value 3.6823 3.7813 
P-value 0.0126 0.011 

 

For both d=1 and d=2, the p-values are smaller than 0.05. We reject the null 

hypothesis that there is no threshold nonlinearity. Then we consider there exists 

threshold nonlinearity. 

Generally speaking, we assume d is no more than p in model. For a given AR order p, 

Tsay suggests to select an estimate of the delay parameter, such that 

ˆarg max ( , )d p pd F p d  

Where ˆ ( , )pF p d is the F-statistic value. From Table 1, when d=1, F=3.6823 and when 

d=2, F=3.7813. So we take d=2. 

Now we use Hansen’s approach to test nonlinearity of the time series. We have just 

mentioned order p=2 and delay d=2. We also use these two choices to test nonlinearity. 

The result shows in the following table. 

 

Table 2: Hansen sup-LR nonlinearity test 

Number of Bootstrap Replications   1000

Threshold Estimate               154

F-test for no threshold           13.8753

Bootstrap P-Value                0.022

 

The null hypothesis is no threshold nonlinearity. Bootstrap P-Value=0.022. At the 

0.05 significance level, we reject the null hypothesis. We also can get the threshold 

estimation and F-statistics from Hansen sup-LR nonlinearity test. In this series, 

threshold value r=154 and F=13.8753. 
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4.1.3 Locating Threshold Value 

We identify the threshold value using scatter plot of t-statistic of the recursive least 

squares. The abscissa stands for ordered threshold variable and ordinate stands for 

t-statistics. In general case, when t-statistics is greater than 2, the result is significance. 

Then we check scatter plot.  

Y_{t-2}

t-
ra

tio
 o

f 
A

R
(1

)

100 200 300 400 500 600

-1
0

1
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3
4

5
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tio
 o

f 
A

R
(2

)

100 200 300 400 500 600

2
4

6
8

 

Figure 3:  Scatter plot of Recursive t Ratios versus ordered threshold variable 

 

From Figure 3, we identify threshold value r1=110 clearly, because there is an 

obvious jump around 110. The plot also shows there is a jump around 300. But after 

threshold value r2=300, there are only several observations. We may consider r2=300 

is a possible threshold value. 

  In Table 2, we find threshold estimate is equal to 154 in Hansen’s approach. We 

also use graphical tool to observe intuitively. From Figure 4, we can see that when 

threshold value is equal to 154, likelihood ratio statistics take the minimum. 



10 
 

Threshold

LR
 s

ta
t

100 150 200 250 300

0
5

10
15

 

Figure 4: Confidence interval for threshold value by inverting LR statistics 

  

4.1.4 Estimation 

  For both two methods, we obtain the following estimated models by using the 

results above. 

Model1 is using by Tsay’s approach with two-regime and the threshold value is 

r1=110. 

1 2 2

1 2 2

54.7642 0.1459 0.8038 110

33.6193 0.2368 0.5401 110
t t t t

t t t

Y Y Y if Y

Y Y if Y
  

  

   

   
 

 

Model2 is using by Tsay’s approach with three-regime and two threshold values are 

r1=110 and r2=300. 

1 2 2

1 2 2

1 2 2

54.7642 0.1459 0.8038 110

67.7023 0.1964 0.3786 110 300

44.2069 0.3389 0.4651 300

t t t t

t t t

t t t

Y Y Y if Y

Y Y if Y

Y Y if Y

  

  

  

   
    
   
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Model3 is using by Hansen’s approach with two-regime and the threshold value is 

r1=154. 

1 2 2

1 2 2

71.782 0.171 0.487 154

1.457 0.253 0.627 154
t t t t

t t t

Y Y Y if Y

Y Y if Y
  

  

   

     

 

4.2 Forecasting 

In Table 3, we predict 13 weeks ahead (from Jan 7th in 2000 to Mar 31st in 2000), 

from three threshold autoregressive models and one linear AR model. 

Table 3: Forecasting 

 True value PV in model1 PV in model2 PV in model3 PV in AR(5) 

1 240 152.3558 150.427 164.8533 128.9953 
2 94 163.6271 178.0235 174.8856 142.158 
3 121 166.7444 174.0653 173.8478 128.885 
4 264 168.6178 173.9603 174.7583 144.7502 
5 131 170.3795 172.4602 175.1773 145.4075 
6 201 171.1976 171.8044 175.1899 144.7948 
7 148 173.7288 172.8345 176.8814 146.8613 
8 240 173.4279 171.2017 176.1222 148.4574 
9 201 174.2187 171.5585 176.5669 151.1507 
10 177 174.2557 170.807 176.146 152.0759 
11 140 176.2515 172.7882 177.9761 153.5507 
12 255 176.3511 172.0622 177.4289 154.972 
13 34 176.4862 172.0956 177.7566 156.3892 

 

We calculate root of mean squared errors and do a comparison in Table 4. 

Table 4: Root of mean squared error 

  Model1 Model2 Model3 AR(5) 
RMSE 67.81162 68.97989 67.48328 72.82559 

 

Model1 and Model2 are modeled by Tsay’s approach. Compared with two models, 

root of mean squared error in Model1 is smaller than root of mean squared error in 

Model2, since we add a threshold value (r2=300) which may increase errors and risks. 



12 
 

When the model is more complex, the error may be greater. And after threshold value 

r2=300, there are only several observations. Model1 and Model3 have in common 

with their numbers of regimes. Model1 is estimated by Tsay’s approach and Model3 is 

estimated by Hansen’s approach. Comparing those two models, we found that Model3 

is slightly better than Model1. The disadvantage in Hansen’s approach is that we just 

can estimate one threshold value and consider two-regime TAR model. The root of 

mean squared error in linear AR(5) model is greatest, which obtains RMSE=72.82559. 

Compared with nonlinear models, the linear model is the worst. This shows TAR 

model is good to apply in nonlinear data.  

 

5. Conclusion 

This paper has applied Threshold Autoregressive Model in U.S. imports of 

conventional motor gasoline data. We have shown how to test nonlinearity, specify 

threshold value and forecast. We have used two methods (Tsay and Hansen) modeling 

and forecasting and compared them. Tsay’s approach can select multiple threshold 

values. Hansen’s approach just can choose one threshold value. We may consider how 

to expand to multiple threshold values using Hansen’s approach. At last, we forecast 

13 weeks ahead. The result shows Hansen’s method is more accurate.  
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