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Abstract

Since GARCH family models have been introduced to the world, people

often use them to analyse volatility and they usually fit well. The aim of this

paper is to find a better GARCH model to fit the Chinese Shanghai

Composite Index data. This paper shows some properties of the common

daily stock data, then it demonstrates the estimation results of the GARCH

model and the asymmetric power ARCH (APARCH). At last, we compare the

modeling results between GARCH model and APARCH model and conclude

that APARCH model with AR(1) process has better performance.
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1.Introduction

1.1 Background

Nowadays, with the development of economics all around the world, more

and more people are concerned about the everyday change of the financial

market. Most people prefer a higher rate of return than just putting money

into banks to get less interest. To invest in stock market is a very common

choice for those investors. It is well-known that higher benefit usually comes

with higher risk in the investment environment. Then it is reasonable that the

changes and trends issues of the stock market are concerned by investors

much more.

People can get information about the situation of the stock market in many

ways. Among all the symbols of the stock market situation, volatility is an

essential label. "For a definition, volatility is a measure for variation of the

price of a financial instrument over time" (Lin C, 1996). Therefore the future

stock price uncertainty could be presented as volatility. Modeling and

forecast volatility need new models other than the traditional linear

regression models. The well-known traditional linear tools have their own

limitations in the application since they always ignore the heteroskedasticity

of the daily stock data.

1.2 Literature Review

The demand of allowing investors to handle volatility which is treated as the

varying trends of the financial market urges people to create this new kind of

model for heteroskedasticity. The high-frequency stock market daily data

usually has some special properties such as fat-tailness, excess kurtosis and

skewness. Modelling volatility of this kind data is a very tough task. As

mentioned before, the most important property of the data, heteroskedasticity
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means that the error term variance of the data is not a constant. This property

caused the limitation of traditional linear financial instruments. The first

model of conditional heteroskedasticity, the autoregressive conditional

heteroskedasticity (ARCH) was brought up by Engle (1982). Then the

Generalized ARCH (GARCH) model which is proposed by Bollerslev (1986)

and Taylor (1986) has replaced the ARCH model in most applications. After

that, many GARCH family models came out, like Asymmetric Power ARCH

(Ding, et al, 1993), Exponential GARCH (Nelson,1991), Glosten-

Jagannathan-Runkle GARCH (GJRGARCH) model composed by Glosten,

Jagannathan and Runkle (1993). Among the worldwide introduced GARCH

family models, the overwhelmingly most popular GARCH model in

applications has been the GARCH(1,1) model (Teräsvirta, 2006). GARCH

family models are regarded as the best tools to analyse financial data

considering the heteroskedasticity. Among them, GARCH (1,1) is widely

used for this kind of data which has fat-tailness, excess kurtosis and

skewness, because of those properties, we can also connect it to the

Asymmetric Power ARCH model.

For the Shanghai composite index, Zhang, Cheng and Wang(2005) has tried

to use GARCH(1,1) and EGARCH(1,1) to analyse it. The time period of the

data they used for the paper is very short and they focused on the

characteristic of EGARCH model in the empirical research.

1.3 Aim

The aim of this paper is to find the model which fits the high-frequency stock

market data better between the mostly used GARCH(1,1) and APARCH(1,1)

models. We also compare the results for all the models when they are with or

without ARMA(1,0) process
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2.Data

This paper uses the common stock index as the original dataset. In People's

Republic Of China, two different stock exchanges are operated separately.

One is Shanghai stock exchange, the other one is Shenzhen stock exchange.

The Shanghai stock exchange is established much earlier and has larger

amount of listed companies, listed stocks and more capitalization value than

Shenzhen stock exchange. In summary, based on the technology and the

geographical advantage of Shanghai, the Shanghai stock exchange becomes

the most important and the main exchange in China. The above conditions

are the reasons why the data from the Shanghai stock exchange will be used

in our application.

The Shanghai Stock Exchange was established on December.19th.1990 and

the time period of the dataset in this article starts from the very beginning and

ends in December. 8th. 2011.

2.1 Index returns

Here is the definition of index return: let { ty } be the time series of the daily

price of some financial asset. The serially return on the tth day is defined as

)log()log( 1−−= ttt yyr

Sometimes these time series of the return price are multiplied by 100 which

make sure that they can be interpreted as percentage changes. The

multiplication may reduce numerical errors since the original returns could

be very small numbers.

2.2 Plots of data

Below is the plot of the daily data of the Shanghai Composite Index,

including everyday high, low and closing price data and closing prices were
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used as the target to analyse. The Figure 1 shows this time-varying time

series data has an obviously variability and apparently huge changes from

2006 to 2008.

Figure 1: Plot of original daily data

Figure 2: Plot of index return data

The Figure 2 is the plot of index return data. The volatilitys would be

analysed by using the index return data instead of the original index data
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through the way that using the 100-times-log difference of each daily closing

price which is mentioned in section 2.1.

2.3 Summary Statistics

The Table 1 demonstrates some summary statistics of the data.

There are 5137 observations in total in this dataset. After the log-difference

process, we have 5136 observations. We can see that the mean and median of

the data are both very near zero and the standard deviation is quite small. The

kurtosis and skewness are excess which are exactly the characteristics of

financial time series.

Table 1 : Summary Statistics of Shanghai Index Returns

2.4 ARCH-LM test

The ARCH-LM test is a Lagrange multiplier (LM) test which is frequently

used to test for the lag length of ARCH errors, in other words, the ARCH-LM

test is about testing whether the series has ARCH effects at all (Engle, 1982).

Values

Min. -17.910

Max. 71.920

Median 0.061

Mean 0.067

Std. Dev. 2.523

Skewness 5.375

Kurtosis 141.661

Number of obs. 5136

Note: This table shows summary statistics of returns of Shanghai Composite
Index daily closing price by using 100 times log-differences.
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For the ARCH-LM test, we run a regression here,

t

q

i
qtit e++= ∑

=
− )(

1

2
0

2 εααε

In this regression, 021 ==== qααα … is the null hypothesis and the

alternative hypothesis is 0: 11 ≠αH or 02 ≠α or 02 ≠α… which means

there would be at least one of the estimated parameter iα significant for

sure. Besides, the test statistics follows 2χ distribution with q degrees of

freedom.

The p-value of the test in this paper equals to 0.0108 which is a very small

one. Therefore the null hypothesis that the series has no ARCH effects has

been rejected. The result of the test allows us to fit GARCH family models to

the data.

2.5 Autocorrelation function

Figure 3 shows the autocorrelation function results. If a financial time series

is autocorrelated, it means that the future values should depend on current

and past value which suggests that it is predictable. The results prove that the

returns, return square, especially the absolute value of returns are frequently

autocorrelated.
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Figure 3: Autocorrelation Function of Returns, squared returns and absolute

value of returns

3.Methodology

Engle proposed a new model in 1982 which is called AutoRegressive Conditional

Heteroskedasticity (ARCH). This is the first model of conditional heteroskedasticity.

Afterwards in 1986, Bollerslev brought up Generalized ARCH (GARCH) model. It

replaced ARCH model in most applications eventually. In 1993, Ding, Engle and

Granger, they carried out an asymmetric model called Asymmetric Power ARCH

(APARCH). Models of Autoregressive Conditional Heteroskedasticity (ARCH) are

the most popular way of parameterizing this dependence(Teräsvirta, 2006).

3.1 ARMA, ARCH, GARCH

The return series of a financial asset, { tr }, is often a serially sequence with

zero mean and exhibits volatility clustering. This suggests that the

conditional variance of { tr } given past returns is not constant (Cryer and

Chan, 2008). This is the reason why we cannot apply a simple linear

regression to this kind of data since they consider the series as homoskedastic
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series indeed.

Here is the standard time series model:

tttt E ε+Ω= −）（ 1|rr

Following Bollerslev (1986), tr here denote a real-valued discrete-time

process with conditional mean and variance both varies with 1-tΩ , where 1-tΩ

is the information set of all information through time t. tr is also regarded as

return in this paper.

Then we can take an AutoRegressive MovingAverage (ARMA) (p,q) model

as the mean equation,

)(|r t1 θµ=Ω −）（ ttE

qtqtpttr −−−− ++++++= εθεθϕϕϕθµ ⋯⋯ 11p110t r)(

In financial applications, it is the common practice to apply ARMA model to

the return series as mean equation. Since it may be too restrictive to assume

that the observed process is a pure GARCH, adding up an ARMA part

considerably extends the range of applications.

Then an ARCH model (Engle,1982) can be treated as the variance function,

)(h)|()|r(ar 1
2

1 θε ttttt EV =Ω=Ω −−

The ARCH(q) process function form is like this:
22

11t ...h qtqt −− +++= εαεαω

The ARCH process introduced by Engle(1982) clearly recognizes the

difference between the unconditional and the conditional variance allowing

the latter to change over time as a function of past errors (Bollerslev, 1986).

As we mentioned above, in most applications, the ARCH model has been

replaced by the Generalized ARCH (GARCH) model that Bollerslev (1986)

and Taylor (1986) proposed independently.
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The GARCH (p,q) process is given as

tttt E ε+Ω= −）（ 1|rr

),0(~| 1t tt hN−Ωε

ptptqtqtt hh −−−− ++++++= ββεαεαω ⋯⋯ 11
22

11h

Here, the conditional distribution of tε is supposed to be normally

distributed with zero mean and the conditional variance equals to th , same as

ARCH process.

We call the term ∑
=

−

p

i
itih

1

β GARCH term. For p=0, the process is simply the

ARCH(q) process; for p=q=0, tε is only white noise.

Usually the simplest GARCH(1,1) model works very well:

tttt E ε+Ω= −）（ 1|rr

1
2
1

1-tt )h,0(~|

−− ++=

Ω

ttt

t

hh
N

βαεω

ε

where 0,0,0 >>> βαω

3.2 APARCH

In particular, Ding, et al (1993) investigated the autocorrelation structure of
δ|| tr , where tr is the daily stock market returns, and δ is a positive number

as the function power. They found |r| t had significant positive auto-

correlations for long lags which we also concluded in section 2.5. Motivated

by this empirical result they proposed a new general class of ARCH models,

which they call the Asymmetric Power ARCH (APARCH).

The variance equation of APARCH(p,q) can be written as:

tt hz=tε
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This model is quite interesting since it couples the flexibility of a varying

exponent with the asymmetry coefficient (to take the “leverage effect” into

account). Moreover, the APARCH includes seven other ARCH extensions as

special cases, such as:

� ARCH when ),1(0,,10,2 qjpi ji …… ===== βγδ ）（

� GARCH when ）（ pii …,10,2 === γδ

� Taylor and Schwert GARCH(TS-GARCH) when 0,1 == iγδ

� Glosten, Jagannathan, and Runkle(GJR-GARCH) when 2=δ

� T-GARCH when 1=δ

� N-GARCH when ),1(0,,10 qjpi ji …… ==== βγ ）（

� Log-ARCH Model when 0→δ

3.3 AIC & BIC

The Akaike information criterion (AIC) is to measure the relative goodness

of fitting statistical models. It was developed by Hirotsugu Akaike, under the

name of "an information criterion" (AIC), and was first published by Akaike

in 1974. In the general case, the traditional AIC defined as

)ln(22 LkAIC −=

where k is the number of parameters in the statistical model, and L is the

maximized value of the likelihood function for the estimated model.

In this paper, AIC is calculated like this,

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Parameter
http://en.wikipedia.org/wiki/Likelihood_function
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NkLAIC /)2|)ln(|2( +=

N here stands for sample size.

Among a group of candidate models for the data, the preferred model is the

one with the minimum AIC value. Based on that, we can also come to

another conclusion that we need a maximum value of the log-likelihood

function because that the larger log-likelihood we have, the smaller AIC

value we will get.

Besides, the Bayesian information criterion (BIC) is also a criterion for model

selection. It is based on the likelihood function and it is quite closed to Akaike

information criterion (AIC).

The formula for the BIC is:

)ln(ln2)|(ln2- nkLBICkxp +⋅−=≈⋅

The assumption that the model errors or disturbances are independently and

identically distributed according to a normal distribution is precisely suitable

for the application case in this paper. Therefore the AIC & BIC values are

two benchmarks for choosing a better fitting model here.

4.Application results

Both of the estimations are processed under the conditional distribution

normality and processing with the 5000 observations. After the estimation,

as mentioned before, the comparison between GARCH models is based on

those criteria.

http://en.wikipedia.org/wiki/Akaike_information_criterion
http://en.wikipedia.org/wiki/Akaike_information_criterion
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Table 2: Estimation results of parameters in GARCH models within standard

error in brackets

Table 2 shows the estimation results of GARCH models. Since the standard

GARCH(1,1) and APARCH(1,1) do not have an AutoRegressive process,

then they do not have the parameter ϕ in that process. For another,

APARCH process has two unique parameters γ and δ which GARCH

process does not.

From Table 2, we can see that all the parameters come up with very small

standard error which shows their significance.

Following the methodology, the first measuring of the comparison is

log-likelihood which needs a larger value and then the AIC value and BIC

value are opposite which require smaller value.

From Table 3, we can see that two APARCH models have both smaller AIC

value and BIC value, meanwhile, a larger log-likelihood which all suggests

that APARCH models fitted this data better than the well-known standard

GARCH models. Between these two APARCH models, ARMA(1,0) plus

APARCH(1,1) model performs even better which certifies that when we

GARCH(1,1)
ARMA(1,0)
+GARCH(1,1)

APARCH(1,1)
ARMA(1,0)

+APARCH(1,1)

µ 0.023
(0.021)

0.023
(0.021)

0.044
(0.007)

0.047
(0.026)

AR(1) ----------
0.005
(0.016)

----------
0.052
(0.025)

ω 0.062
(0.010)

0.062
(0.010)

0.049
(0.007)

0.048
(0.006)

1α
0.259
(0.019)

0.259
(0.019)

0.214
(0.013)

0.215
(0.013)

1β
0.800
(0.012)

0.800
(0.012)

0.831
(0.010)

0.829
(0.010)

1γ ---------- ----------
-0.067
(0.024)

-0.083
(0.025)

δ ---------- ---------- 0.964
(0.008)

0.895
(0.009)
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allow for an ARMA part, it will obtain a better result. This result shows that

even though the GARCH models are capable of most the analysis of financial

return time series, sometimes it still depends on the data itself, ARMA or

other linear tools may remain useful in practical cases. But the

ARMA(1,0)+GARCH(1,1) model does not show any better result in standard

GARCH models which shows limitation and uncertainty of ARMA process.

Table 3: Comparison of GARCH family models

5.Conclusion

Among all the estimations and comparisons based on some certain criteria,

all the parameters are significant which shows that the Shanghai Composite

Index data could be modeled by GARCH family models appropriately. The

comparison result suggests that APARCH models could fit the data better.

The best performance is from ARMA+APARCH model which suggests that

it is efficient to combine the mean and variance function together.

However, adding ARMA process could not confirm that the goodness-of-fit

would always show a better result for sure, such as the case of standard

GARCH models, although it is considered to extend the range of

applications.

All the results above shows that there may exist some special properties in

Chinese stock index data. The time period of the data for this paper is quite

long and there are very obvious up and down during the year 2006 and 2008,

GARCH(1,1) ARMA(1,0)

+GARCH(1,1)
APARCH(1,1) ARMA(1,0)

+APARCH(1,1)

Log-likelihood -10256.69 -10255.27 -10213.76 -10208.74

AIC value 4.104 4.104 4.088 4.086

BIC value 4.109 4.111 4.096 4.095
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That could be a break in this data which is on the very advanced level

modeling and forecasting and far beyond the range of this paper.

Another assumption in this paper is that the distribution of the error terms is

supposed to be normally distributed. We could also consider it under the

student-t distribution since t distribution has some properties such as

fat-tailness which is exactly the same as the financial time series data.

Estimations and comparisons by considering different distributions could be

more beneficial for the applications.

The stock index is influenced by a lot of external factors such as inflation,

tight or loose monetary policy and so on. It could hardly be predicted or

modeled very accurately. Especially for China, the research of the composite

index is much less than the other famous stock index around the world.

Considering more different distributions, more different GARCH family

models could be our further study.
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